Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Find articulation vertices of a graph
ResourceFunction["ArticulationVertices"][g] gives a list of all articulation vertices in graph g. |
The only articulation vertex of a star is its center:
In[1]:= | ![]() |
Out[1]= | ![]() |
All vertices of a path, except the end vertices, are articulation vertices:
In[2]:= | ![]() |
Out[2]= | ![]() |
Articulation vertices a random graph:
In[3]:= | ![]() |
Out[3]= | ![]() |
In[4]:= | ![]() |
Out[4]= | ![]() |
In[5]:= | ![]() |
Out[5]= | ![]() |
ArticulationVertices works on undirected graphs:
In[6]:= | ![]() |
Out[6]= | ![]() |
Directed graphs:
In[7]:= | ![]() |
Out[7]= | ![]() |
Multigraphs:
In[8]:= | ![]() |
Out[8]= | ![]() |
Mixed graphs:
In[9]:= | ![]() |
Out[9]= | ![]() |
Define a graph with multiple articulation vertices:
In[10]:= | ![]() |
In[11]:= | ![]() |
Out[11]= | ![]() |
Deleting any of the articulation vertices, disconnects the graph:
In[12]:= | ![]() |
Out[12]= | ![]() |
In[13]:= | ![]() |
Out[13]= | ![]() |
FindVertexCut finds a single vertex cut possibly containing multiple vertices:
In[14]:= | ![]() |
In[15]:= | ![]() |
In[16]:= | ![]() |
Out[16]= | ![]() |
For this graph there are no articulation vertices:
In[17]:= | ![]() |
Out[17]= | ![]() |
For graphs with vertex connectivity 1, the cut vertex returned by FindVertexCut is one of the articulation vertices:
In[18]:= | ![]() |
In[19]:= | ![]() |
Out[19]= | ![]() |
In[20]:= | ![]() |
Out[20]= | ![]() |
A graph with no articulation vertices is biconnected:
In[21]:= | ![]() |
In[22]:= | ![]() |
Out[22]= | ![]() |
In[23]:= | ![]() |
Out[23]= | ![]() |
A graph with a vertex of degree 1 cannot be biconnected:
In[24]:= | ![]() |
Out[24]= | ![]() |
In[25]:= | ![]() |
Out[25]= | ![]() |
An articulation vertex is a member of at least two biconnected components:
In[26]:= | ![]() |
In[27]:= | ![]() |
Out[27]= | ![]() |
In[28]:= | ![]() |
Out[28]= | ![]() |
GraphData[name,{"Graph","ArticulationVertices"}] gives the articulation vertices of a named graph:
In[29]:= | ![]() |
Out[29]= | ![]() |
In[30]:= | ![]() |
Out[30]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License