Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
General contraction of levels of the outer product of arrays
ResourceFunction["ArrayContractThread"][f,arrays,{ctr1,ctr2,…}] performs several contractions. | |
ResourceFunction["ArrayContractThread"][f,arrays,ctrs,g] performs contractions ctrs using head g. | |
ResourceFunction["ArrayContractThread"][f,{a1,…,an},ctrs,g,{d1,…,dn}] performs contractions assuming that only the first di levels of array ai are array levels. |
Take two arrays:
| In[1]:= |
| Out[1]= |
| In[2]:= |
| Out[2]= |
Contract the first levels of the arrays:
| In[3]:= |
| Out[3]= |
Contract level 2 of the first array and level 1 of the second:
| In[4]:= |
| Out[4]= |
Take three arrays:
| In[5]:= |
| Out[5]= |
| In[6]:= |
| Out[6]= |
| In[7]:= |
| Out[7]= |
Perform two simultaneous contractions:
| In[8]:= |
| Out[8]= |
Use head g for the same contractions:
| In[9]:= |
| Out[9]= |
Use arrays of any depth and dimension:
| In[10]:= | ![]() |
| In[11]:= |
| Out[11]= |
Perform any number of contractions simultaneously:
| In[12]:= | ![]() |
| In[13]:= |
| Out[13]= |
| In[14]:= |
| Out[14]= |
| In[15]:= |
| Out[15]= |
Use any head for contractions:
| In[16]:= |
| In[17]:= |
| Out[17]= |
Specify the effective levels of the arrays:
| In[18]:= |
| In[19]:= |
| Out[19]= | ![]() |
| In[20]:= |
| Out[20]= |
| In[21]:= |
| Out[21]= |
| In[22]:= |
| Out[22]= |
Arrays do not need to be rectangular beyond the contraction levels:
| In[23]:= |
| Out[23]= |
| In[24]:= |
| Out[24]= |
Effective depths can be zero, and then the whole array is treated as a scalar:
| In[25]:= |
| In[26]:= |
| Out[26]= |
Inner is a particular case of ArrayContractThread:
| In[27]:= |
| In[28]:= |
| Out[28]= |
| In[29]:= |
| Out[29]= |
| In[30]:= |
| Out[30]= |
| In[31]:= |
| Out[31]= |
Dot is a particular case of ArrayContractThread:
| In[32]:= | ![]() |
| In[33]:= |
| Out[33]= |
| In[34]:= |
| Out[34]= |
Outer is a particular case of ArrayContractThread:
| In[35]:= | ![]() |
| In[36]:= |
| Out[36]= |
| In[37]:= |
| Out[37]= |
| In[38]:= |
| Out[38]= |
ArrayContractThread can handle scalar factors, but Outer cannot:
| In[39]:= |
| Out[39]= |
| In[40]:= |
| Out[40]= |
MapThread is a particular case of ArrayContractThread:
| In[41]:= | ![]() |
| In[42]:= |
| Out[42]= |
| In[43]:= |
| Out[43]= |
Thread is a particular case of ArrayContractThread:
| In[44]:= |
| In[45]:= |
| Out[45]= |
TensorContract of a TensorProduct expression is a particular case of ArrayContractThread if each contraction involves at most one level of each array:
| In[46]:= | ![]() |
| In[47]:= |
| Out[47]= |
The special case ArrayContractThread[f,{expr},{{n}},List,n] is equivalent to Map[f,expr,{n}]:
| In[48]:= |
| In[49]:= |
| Out[49]= |
| In[50]:= |
| Out[50]= |
| In[51]:= |
| Out[51]= |
The special case ArrayContractThread[Identity,{expr},{{n}},g,n] is equivalent to Apply[g,expr,{n-1}]:
| In[52]:= |
| In[53]:= |
| Out[53]= |
| In[54]:= |
| Out[54]= |
| In[55]:= |
| Out[55]= |
ArrayContractThread effectively normalizes sparse and structured arrays in input:
| In[56]:= |
| Out[56]= |
Compare to the equivalent computation with Outer:
| In[57]:= |
| Out[57]= |
| In[58]:= |
| Out[58]= |
This work is licensed under a Creative Commons Attribution 4.0 International License