Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Get an approximation to a parametric curve
ResourceFunction["ApproximatedCurve"][c,{t,t0,tf,n}] computes a line of n points approximating the parametric curve c with t from t0 to tf. | |
ResourceFunction["ApproximatedCurve"][c,{t,t0,tf,n},"type"] gives a result based on "type". |
Approximate cycles around a figure-eight curve:
In[1]:= | ![]() |
Out[1]= | ![]() |
Approximate the curve with lines:
In[2]:= | ![]() |
Out[2]= | ![]() |
Show the lines:
In[3]:= | ![]() |
Out[3]= | ![]() |
Follow a path with arrows:
In[4]:= | ![]() |
Out[4]= | ![]() |
Define a curve in three dimensions:
In[5]:= | ![]() |
Out[5]= | ![]() |
Polygonal approximation to a curve:
In[6]:= | ![]() |
Out[6]= | ![]() |
Different approximation to a curve:
In[7]:= | ![]() |
Out[7]= | ![]() |
Convert points in the following closed curve into a tube. It requires less file space than a full parametrization plot:
In[8]:= | ![]() |
In[9]:= | ![]() |
Out[9]= | ![]() |
Get a curve similar to a handwritten curve:
In[10]:= | ![]() |
Out[10]= | ![]() |
Using AnglePath gives a different curve:
In[11]:= | ![]() |
Out[11]= | ![]() |
Define an epicycloid:
In[12]:= | ![]() |
Out[12]= | ![]() |
Modify it using Accumulate:
In[13]:= | ![]() |
Out[13]= | ![]() |
Make a spline from the points of a curve:
In[14]:= | ![]() |
Out[14]= | ![]() |
Make a design from an epicycloid:
In[15]:= | ![]() |
Out[15]= | ![]() |
In[16]:= | ![]() |
Out[16]= | ![]() |
Define an epicycloid:
In[17]:= | ![]() |
Out[17]= | ![]() |
Get a region:
In[18]:= | ![]() |
Out[18]= | ![]() |
Test if it is a region:
In[19]:= | ![]() |
Out[19]= | ![]() |
Discretize the region:
In[20]:= | ![]() |
Out[20]= | ![]() |
Compute some properties:
In[21]:= | ![]() |
Out[21]= | ![]() |
Create and visualize a nephroid:
In[22]:= | ![]() |
Out[22]= | ![]() |
A crude approximation to arc length:
In[23]:= | ![]() |
Out[23]= | ![]() |
In[24]:= | ![]() |
Out[24]= | ![]() |
Successive approximation to arc length versus the number of steps:
In[25]:= | ![]() |
Out[25]= | ![]() |
Forced undersampling with MaxRecursion and PlotPoints:
In[26]:= | ![]() |
Out[26]= | ![]() |
Create a similar result using ApproximatedCurve:
In[27]:= | ![]() |
Out[27]= | ![]() |
A polygon gives a similar result to FilledCurve:
In[28]:= | ![]() |
Out[28]= | ![]() |
Generalize CirclePoints:
In[29]:= | ![]() |
In[30]:= | ![]() |
Out[30]= | ![]() |
Distances between successive points are different:
In[31]:= | ![]() |
Out[31]= | ![]() |
Show the curve using points:
In[32]:= | ![]() |
Out[32]= | ![]() |
Approximate a nephroid:
In[33]:= | ![]() |
Out[33]= | ![]() |
In[34]:= | ![]() |
Out[34]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License