Function Repository Resource:

# AntidiagonalTotals

Give the totals of the entries on the rising diagonals of a square matrix

Contributed by: George Beck
 ResourceFunction["AntidiagonalTotals"][mat] gives the first n totals along the antidiagonals of the n×n matrix mat.

## Details and Options

The matrix must be square.
ResourceFunction["AntidiagonalTotals"][mat] is equal to ResourceFunction["AntidiagonalTotals"][Transpose[mat]].

## Examples

### Basic Examples (2)

Get the totals for a 3×3 matrix:

 In[1]:=
 Out[1]=

Get the totals for a random matrix:

 In[2]:=
 Out[3]=
 In[4]:=
 Out[4]=

### Properties and Relations (3)

The direction of the antidiagonals:

 In[5]:=
 Out[5]=

AntidiagonalTotals[mat] is equal to AntidiagonalTotals[Transpose[mat]]:

 In[6]:=
 Out[6]=
 In[7]:=
 Out[7]=
 In[8]:=
 Out[8]=
 In[9]:=
 Out[9]=

Pascal’s triangle:

 In[10]:=
 Out[10]=

The Fibonacci sequence:

 In[11]:=
 Out[11]=
 In[12]:=
 Out[12]=

George Beck

## Requirements

Wolfram Language 11.3 (March 2018) or above

## Version History

• 1.0.0 – 11 February 2019