Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Give the totals of the entries on the rising diagonals of a square matrix
ResourceFunction["AntidiagonalTotals"][mat] gives the first n totals along the antidiagonals of the n×n matrix mat. |
Get the totals for a 3×3 matrix:
In[1]:= | ![]() |
Out[1]= | ![]() |
Get the totals for a random matrix:
In[2]:= | ![]() |
Out[3]= | ![]() |
In[4]:= | ![]() |
Out[4]= | ![]() |
The direction of the antidiagonals:
In[5]:= | ![]() |
Out[5]= | ![]() |
AntidiagonalTotals[mat] is equal to AntidiagonalTotals[Transpose[mat]]:
In[6]:= | ![]() |
Out[6]= | ![]() |
In[7]:= | ![]() |
Out[7]= | ![]() |
In[8]:= | ![]() |
Out[8]= | ![]() |
In[9]:= | ![]() |
Out[9]= | ![]() |
Pascal’s triangle:
In[10]:= | ![]() |
Out[10]= | ![]() |
The Fibonacci sequence:
In[11]:= | ![]() |
Out[11]= | ![]() |
In[12]:= | ![]() |
Out[12]= | ![]() |
Wolfram Language 11.3 (March 2018) or above
This work is licensed under a Creative Commons Attribution 4.0 International License