Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Construct an alternating tree graph
ResourceFunction["AlternatingTreeGraph"][n] generates an alternating tree graph from a path graph with n vertices. |
Make an alternating tree graph from the path graph with 10 vertices:
In[1]:= | ![]() |
Out[1]= | ![]() |
Create a large alternating tree graph:
In[2]:= | ![]() |
Out[2]= | ![]() |
All graph layouts can be selected:
In[3]:= | ![]() |
Out[3]= | ![]() |
Try SpringEmbedding if SpringElectricalEmbedding does not work well:
In[4]:= | ![]() |
Out[4]= | ![]() |
In[5]:= | ![]() |
Out[5]= | ![]() |
Find the graph center and graph periphery:
In[6]:= | ![]() |
Out[6]= | ![]() |
In[7]:= | ![]() |
Out[7]= | ![]() |
Use FindSequenceFunction to find a pattern in the order and size of the graph:
In[8]:= | ![]() |
Out[8]= | ![]() |
In[9]:= | ![]() |
Out[9]= | ![]() |
In[10]:= | ![]() |
Out[10]= | ![]() |
Predict the size of a 2980 length alternating tree:
In[11]:= | ![]() |
Out[11]= | ![]() |
In[12]:= | ![]() |
Out[12]= | ![]() |
In[13]:= | ![]() |
Out[13]= | ![]() |
Wolfram Language 12.3 (May 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License