Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Stieltjes-Jacobi polynomial
ResourceFunction["StieltjesJacobiE"][n,a,b,x] gives the Stieltjes-Jacobi polynomial . |
Compute the 2nd Stieltjes-Jacobi polynomial:
In[1]:= |
Out[1]= |
Plot over a subset of the reals:
In[2]:= |
Out[2]= |
Evaluate numerically:
In[3]:= |
Out[3]= |
Evaluate to high precision:
In[4]:= |
Out[4]= |
The precision of the output tracks the precision of the input:
In[5]:= |
Out[5]= |
StieltjesJacobiE threads elementwise over lists:
In[6]:= |
Out[6]= |
Compute the abscissas and weights of a (2n+1)-point Gauss-Kronrod quadrature:
In[7]:= |
In[8]:= |
In[9]:= |
Out[9]= |
In[10]:= |
Out[10]= |
Use the Gauss-Kronrod abscissas and weights to approximate the area under a curve:
In[11]:= |
In[12]:= |
Out[12]= |
Compare to the output of NIntegrate:
In[13]:= |
Out[13]= |
In[14]:= |
Out[14]= |
Compute the abscissas and weights of a (2n+1)-point Lobatto-Kronrod quadrature:
In[15]:= |
In[16]:= |
In[17]:= |
Out[17]= |
In[18]:= |
Out[18]= |
Use the Lobatto-Kronrod abscissas and weights to approximate the area under a curve:
In[19]:= |
In[20]:= |
Out[20]= |
Compare to the output of NIntegrate:
In[21]:= |
Out[21]= |
In[22]:= |
Out[22]= |
The second (nonpolynomial) solution of the Jacobi differential equation, :
In[23]:= |
StieltjesJacobiE is the polynomial part of the asymptotic expansion of at Infinity:
In[24]:= |
Out[24]= |
In[25]:= |
Out[25]= |
StieltjesJacobiE is a polynomial of degree n+1:
In[26]:= |
Out[26]= |
The roots of JacobiP and StieltjesJacobiE interlace each other:
In[27]:= |
Out[27]= |
A curve with multiple loops:
In[28]:= |
Out[28]= |
This work is licensed under a Creative Commons Attribution 4.0 International License