Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Turn a sequence of expressions into a symbolic sum
| ResourceFunction["SequenceToSum"][{e1,e2,…},n] attempts to return an inactive sum representing e1+e2+… where the user-supplied variable n is used in forming the generic term. | 
 …
… .
.Convert a simple finite sequence to a sum:
| In[1]:= | ![ResourceFunction["SequenceToSum"][{1, 2, 3, 4}, n]](https://www.wolframcloud.com/obj/resourcesystem/images/9b6/9b666ac7-2749-49c6-add1-9b2f64099a97/16ed829efe524f7b.png)  | 
| Out[1]= |   | 
Convert an elided sequence to a sum:
| In[2]:= | ![ResourceFunction["SequenceToSum"][{1, 2, 3, \[Ellipsis], 10}, n]](https://www.wolframcloud.com/obj/resourcesystem/images/9b6/9b666ac7-2749-49c6-add1-9b2f64099a97/5eea9fc50e6b4d02.png)  | 
| Out[2]= |   | 
Evaluate with Activate:
| In[3]:= |   | 
| Out[3]= |   | 
Convert an infinite sequence to a sum:
| In[4]:= | ![ResourceFunction["SequenceToSum"][{1, 1/2, 1/3, \[Ellipsis]}, n]](https://www.wolframcloud.com/obj/resourcesystem/images/9b6/9b666ac7-2749-49c6-add1-9b2f64099a97/0b3ab20ed295559f.png)  | 
| Out[4]= |   | 
Convert an geometric sequence to a sum:
| In[5]:= | ![ResourceFunction["SequenceToSum"][{1, 1/2, 1/4, \[Ellipsis]}, n]](https://www.wolframcloud.com/obj/resourcesystem/images/9b6/9b666ac7-2749-49c6-add1-9b2f64099a97/75e9b4562e2a5f6a.png)  | 
| Out[5]= |   | 
Convert another geometric sequence to a sum and evaluate:
| In[6]:= | ![ResourceFunction["SequenceToSum"][{1/3, 1/6, 1/12, \[Ellipsis]}, n]](https://www.wolframcloud.com/obj/resourcesystem/images/9b6/9b666ac7-2749-49c6-add1-9b2f64099a97/4a0298114959818b.png)  | 
| Out[6]= |   | 
| In[7]:= |   | 
| Out[7]= |   | 
Convert an arithmetic sequence to a sum:
| In[8]:= | ![ResourceFunction["SequenceToSum"][{5, 12, 19, 26, \[Ellipsis]}, n]](https://www.wolframcloud.com/obj/resourcesystem/images/9b6/9b666ac7-2749-49c6-add1-9b2f64099a97/44718bc73167cbc6.png)  | 
| Out[8]= |   | 
Convert another arithmetic sequence to a sum and evaluate:
| In[9]:= | ![ResourceFunction["SequenceToSum"][{5, 10, 15, \[Ellipsis], 100}, n]](https://www.wolframcloud.com/obj/resourcesystem/images/9b6/9b666ac7-2749-49c6-add1-9b2f64099a97/4f812113d0b4f8db.png)  | 
| Out[9]= |   | 
| In[10]:= |   | 
| Out[10]= |   | 
Convert an alternating sequence to a sum and evaluate:
| In[11]:= | ![ResourceFunction[
 "SequenceToSum"][{1/2, -(1/4), 1/8, -(1/16), 1/32, \[Ellipsis], -(1/1024)}, n]](https://www.wolframcloud.com/obj/resourcesystem/images/9b6/9b666ac7-2749-49c6-add1-9b2f64099a97/7ee6bc3b0ce3cb58.png)  | 
| Out[11]= |   | 
| In[12]:= |   | 
| Out[12]= |   | 
Convert a rational sequence to a sum:
| In[13]:= | ![ResourceFunction[
 "SequenceToSum"][{2, 5/2, 10/3, 17/4, 26/5, 37/6, 50/7, \[Ellipsis]},
  n]](https://www.wolframcloud.com/obj/resourcesystem/images/9b6/9b666ac7-2749-49c6-add1-9b2f64099a97/674b9f202bc940b4.png)  | 
| Out[13]= |   | 
Convert a hypergeometric sequence to a sum:
| In[14]:= | ![ResourceFunction["SequenceToSum"][{1, 2, 6, 24, 120, 720, 5040}, n]](https://www.wolframcloud.com/obj/resourcesystem/images/9b6/9b666ac7-2749-49c6-add1-9b2f64099a97/2e4d77c83a4d4f39.png)  | 
| Out[14]= |   | 
| In[15]:= | ![ResourceFunction[
 "SequenceToSum"][{1, 6, 54, 648, 9720, 174960, \[Ellipsis]}, n]](https://www.wolframcloud.com/obj/resourcesystem/images/9b6/9b666ac7-2749-49c6-add1-9b2f64099a97/2bd32ab2ee5c13ab.png)  | 
| Out[15]= |   | 
The ellipsis symbol (…) can appear anywhere within the input sequence:
| In[16]:= | ![ResourceFunction["SequenceToSum"][{\[Ellipsis], 1/12, 1/6, 1/3}, n]](https://www.wolframcloud.com/obj/resourcesystem/images/9b6/9b666ac7-2749-49c6-add1-9b2f64099a97/0c1a262503e944f2.png)  | 
| Out[16]= |   | 
| In[17]:= | ![ResourceFunction[
 "SequenceToSum"][{\[Ellipsis], 3, 6, 9, \[Ellipsis]}, n]](https://www.wolframcloud.com/obj/resourcesystem/images/9b6/9b666ac7-2749-49c6-add1-9b2f64099a97/480a664bdaf23bdf.png)  | 
| Out[17]= |   | 
If successful, SequenceToSum returns an expression with head Inactive[Sum]:
| In[18]:= | ![res = ResourceFunction["SequenceToSum"][{1, 1/2, 1/4, \[Ellipsis]}, n]](https://www.wolframcloud.com/obj/resourcesystem/images/9b6/9b666ac7-2749-49c6-add1-9b2f64099a97/6cab31dc6037cf6d.png)  | 
| Out[18]= |   | 
| In[19]:= | ![Head[res]](https://www.wolframcloud.com/obj/resourcesystem/images/9b6/9b666ac7-2749-49c6-add1-9b2f64099a97/36118f53dbb0877f.png)  | 
| Out[19]= |   | 
If unable to infer the elided part of a sequence, SequenceToSum will return unevaluated:
| In[20]:= | ![ResourceFunction[
 "SequenceToSum"][2, 3, 5, 7, 11, 13, 17, \[Ellipsis], 29]](https://www.wolframcloud.com/obj/resourcesystem/images/9b6/9b666ac7-2749-49c6-add1-9b2f64099a97/21c1919f79c0b700.png)  | 
| Out[20]= |   | 
SequenceToProduct uses FindSequenceFunction to recognize patterns in the input sequence:
| In[21]:= | ![seq1 = {1, 1, 2, 3, 5, 8, 13};
FindSequenceFunction[seq1, n]](https://www.wolframcloud.com/obj/resourcesystem/images/9b6/9b666ac7-2749-49c6-add1-9b2f64099a97/68d90048bd593495.png)  | 
| Out[17]= |   | 
| In[22]:= | ![ResourceFunction["SequenceToSum"][seq1, n]](https://www.wolframcloud.com/obj/resourcesystem/images/9b6/9b666ac7-2749-49c6-add1-9b2f64099a97/692055545d283185.png)  | 
| Out[22]= |   | 
| In[23]:= | ![seq2 = {2, 3, 5, 7, 11};
FindSequenceFunction[seq2, n]](https://www.wolframcloud.com/obj/resourcesystem/images/9b6/9b666ac7-2749-49c6-add1-9b2f64099a97/1201573fbe655fa0.png)  | 
| Out[24]= |   | 
| In[25]:= | ![ResourceFunction["SequenceToSum"][seq2, n]](https://www.wolframcloud.com/obj/resourcesystem/images/9b6/9b666ac7-2749-49c6-add1-9b2f64099a97/5900df6534587381.png)  | 
| Out[25]= |   | 
This work is licensed under a Creative Commons Attribution 4.0 International License