Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Test whether a graph is perfect
The GraphComplement of a perfect Graph is perfect:
| In[3]:= | ![]() |
| In[4]:= |
| Out[4]= |
| In[5]:= |
| Out[5]= | ![]() |
| In[6]:= |
| Out[6]= |
If the graph complement of g is imperfect, then so is g:
| In[7]:= | ![]() |
| In[8]:= |
| Out[8]= | ![]() |
| In[9]:= |
| Out[9]= |
Bipartite graphs are perfect:
| In[10]:= | ![]() |
| In[11]:= |
| Out[11]= |
Line graphs of bipartite graphs are perfect:
| In[12]:= | ![]() |
| Out[12]= | ![]() |
| In[13]:= |
| Out[13]= |
Interval graphs (and chordal graphs in general) are perfect:
| In[14]:= | ![]() |
| Out[15]= | ![]() |
| In[16]:= |
| Out[16]= |
For named graphs, you can check the "Perfect" and "Imperfect" properties within GraphData without computing PerfectGraphQ:
| In[17]:= |
| Out[17]= | ![]() |
| In[18]:= |
| Out[18]= |
| In[19]:= |
| Out[19]= |
| In[20]:= |
| Out[20]= |
This work is licensed under a Creative Commons Attribution 4.0 International License