Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Clausen function
ResourceFunction["ClausenCl"][n,z] gives the Clausen function Cln(z). |
Evaluate numerically:
| In[1]:= |
| Out[1]= |
Plot the first few Clausen functions:
| In[2]:= |
| Out[2]= | ![]() |
Evaluate for complex arguments and parameters:
| In[3]:= |
| Out[3]= |
Evaluate to high precision:
| In[4]:= |
| Out[4]= |
The precision of the output tracks the precision of the input:
| In[5]:= |
| Out[5]= |
Simple exact values are generated automatically:
| In[6]:= |
| Out[6]= |
| In[7]:= |
| Out[7]= |
ClausenCl threads elementwise over lists:
| In[8]:= |
| Out[8]= |
Parity transformations and periodicity relations are automatically applied:
| In[9]:= |
| Out[9]= |
| In[10]:= |
| Out[10]= |
| In[11]:= |
| Out[11]= |
Plots of the Clausen function in the complex plane:
| In[12]:= |
| Out[12]= | ![]() |
| In[13]:= | ![]() |
| Out[13]= | ![]() |
The Clausen function can be expressed in terms of PolyLog:
| In[14]:= | ![]() |
| Out[14]= |
The Clausen function appears in the reflection formula for BarnesG:
| In[15]:= | ![]() |
| Out[15]= |
Verify a relationship between the Clausen function and the inverse tangent integral:
| In[16]:= | ![]() |
| Out[16]= |
Verify the duplication theorem:
| In[17]:= |
| Out[17]= |
Values of the Clausen function at rational multiples of π can be expressed in terms of PolyGamma:
| In[18]:= | ![]() |
| Out[18]= |
Wolfram Language 11.3 (March 2018) or above
This work is licensed under a Creative Commons Attribution 4.0 International License