Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Assign colors to vertices of a graph so that no edge connects vertices of the same color
ResourceFunction["VertexColoring"][g] gives a vertex coloring of graph g. |
"Brelaz" | Brelaz’s heuristics |
"Optimum" | exhaustive search for an optimum coloring |
Group vertices of a graph so that no group contains adjacent vertices:
In[1]:= |
Out[1]= |
In[2]:= |
Out[2]= |
Highlight vertices of the same groups:
In[3]:= |
Out[3]= |
Use the specified set of colors:
In[4]:= |
Out[4]= |
In[5]:= |
Out[5]= |
VertexColoring works with undirected graphs:
In[6]:= |
Out[6]= |
In[7]:= |
Out[7]= |
In[8]:= |
Out[8]= |
Directed graphs:
In[9]:= |
Out[9]= |
In[10]:= |
Out[10]= |
In[11]:= |
Out[11]= |
Multigraphs:
In[12]:= |
In[13]:= |
Out[13]= |
In[14]:= |
Out[14]= |
Mixed graphs:
In[15]:= |
Out[15]= |
In[16]:= |
Out[16]= |
In[17]:= |
Out[17]= |
Graphs with symbolically defined vertices:
In[18]:= |
Out[18]= |
In[19]:= |
Out[19]= |
In[20]:= |
Out[20]= |
By default, VertexColoring uses Brelaz’s heuristics, which does not necessarily give minimum coloring:
In[21]:= |
Out[21]= |
In[22]:= |
Out[22]= |
In this case, a 5-coloring is produced:
In[23]:= |
Out[23]= |
In[24]:= |
Out[24]= |
However, the minimum coloring should use only four colors, as given by the chromatic number of the graph:
In[25]:= |
Out[25]= |
Obtain minimum coloring using Method→"Optimum":
In[26]:= |
Out[26]= |
In[27]:= |
Out[27]= |
In[28]:= |
Out[28]= |
The default Brelaz’s heuristic can produce minimum coloring for some graphs:
In[29]:= |
Out[29]= |
In[30]:= |
Out[30]= |
In[31]:= |
Out[31]= |
In[32]:= |
Out[32]= |
The Brelaz heuristic is optimal for trees:
In[33]:= |
Out[33]= |
In[34]:= |
Out[34]= |
In[35]:= |
Out[35]= |
The Brelaz heuristic is also optimal for complete graphs, which, by definition, are n-colorable:
In[36]:= |
Out[36]= |
In[37]:= |
Out[37]= |
Likewise, the Brelaz heuristic is optimal for complete k-partite graphs that are k-colorable:
In[38]:= |
Out[38]= |
In[39]:= |
Out[39]= |
In[40]:= |
Out[40]= |
Grid graphs are bipartite, for the vertices can be partitioned like the squares on a chessboard:
In[41]:= |
Out[41]= |
In[42]:= |
Out[42]= |
In[43]:= |
Out[43]= |
ChromaticPolynomial can be used to find the chromatic number of a graph:
In[44]:= |
Out[44]= |
In[45]:= |
Out[45]= |
In[46]:= |
Out[46]= |
The coloring corresponding the this chromatic number:
In[47]:= |
Out[47]= |
In[48]:= |
Out[48]= |
This work is licensed under a Creative Commons Attribution 4.0 International License