Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Assign colors to vertices of a graph so that no edge connects vertices of the same color
ResourceFunction["VertexColoring"][g] gives a vertex coloring of graph g. |
| "Brelaz" | Brelaz’s heuristics |
| "Optimum" | exhaustive search for an optimum coloring |
Group vertices of a graph so that no group contains adjacent vertices:
| In[1]:= |
| Out[1]= | ![]() |
| In[2]:= |
| Out[2]= |
Highlight vertices of the same groups:
| In[3]:= |
| Out[3]= | ![]() |
Use the specified set of colors:
| In[4]:= |
| Out[4]= |
| In[5]:= |
| Out[5]= | ![]() |
VertexColoring works with undirected graphs:
| In[6]:= |
| Out[6]= | ![]() |
| In[7]:= |
| Out[7]= |
| In[8]:= |
| Out[8]= | ![]() |
Directed graphs:
| In[9]:= |
| Out[9]= | ![]() |
| In[10]:= |
| Out[10]= |
| In[11]:= |
| Out[11]= | ![]() |
Multigraphs:
| In[12]:= | ![]() |
| In[13]:= |
| Out[13]= |
| In[14]:= |
| Out[14]= | ![]() |
Mixed graphs:
| In[15]:= |
| Out[15]= | ![]() |
| In[16]:= |
| Out[16]= |
| In[17]:= |
| Out[17]= | ![]() |
Graphs with symbolically defined vertices:
| In[18]:= |
| Out[18]= | ![]() |
| In[19]:= |
| Out[19]= |
| In[20]:= |
| Out[20]= | ![]() |
By default, VertexColoring uses Brelaz’s heuristics, which does not necessarily give minimum coloring:
| In[21]:= |
| Out[21]= | ![]() |
| In[22]:= |
| Out[22]= |
In this case, a 5-coloring is produced:
| In[23]:= |
| Out[23]= |
| In[24]:= |
| Out[24]= | ![]() |
However, the minimum coloring should use only four colors, as given by the chromatic number of the graph:
| In[25]:= |
| Out[25]= |
Obtain minimum coloring using Method→"Optimum":
| In[26]:= |
| Out[26]= |
| In[27]:= |
| Out[27]= |
| In[28]:= |
| Out[28]= | ![]() |
The default Brelaz’s heuristic can produce minimum coloring for some graphs:
| In[29]:= |
| Out[29]= | ![]() |
| In[30]:= |
| Out[30]= |
| In[31]:= |
| Out[31]= |
| In[32]:= |
| Out[32]= | ![]() |
The Brelaz heuristic is optimal for trees:
| In[33]:= |
| Out[33]= | ![]() |
| In[34]:= |
| Out[34]= |
| In[35]:= |
| Out[35]= | ![]() |
The Brelaz heuristic is also optimal for complete graphs, which, by definition, are n-colorable:
| In[36]:= |
| Out[36]= | ![]() |
| In[37]:= |
| Out[37]= |
Likewise, the Brelaz heuristic is optimal for complete k-partite graphs that are k-colorable:
| In[38]:= |
| Out[38]= | ![]() |
| In[39]:= |
| Out[39]= |
| In[40]:= |
| Out[40]= | ![]() |
Grid graphs are bipartite, for the vertices can be partitioned like the squares on a chessboard:
| In[41]:= |
| Out[41]= | ![]() |
| In[42]:= |
| Out[42]= |
| In[43]:= |
| Out[43]= | ![]() |
ChromaticPolynomial can be used to find the chromatic number of a graph:
| In[44]:= |
| Out[44]= | ![]() |
| In[45]:= |
| Out[45]= |
| In[46]:= |
| Out[46]= |
The coloring corresponding the this chromatic number:
| In[47]:= |
| Out[47]= |
| In[48]:= |
| Out[48]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License