Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Represent a spherical polygon
ResourceFunction["SphericalPolygon"][{p1,…,pn}] represents a filled spherical polygon with points pi on a sphere centered at the origin. | |
ResourceFunction["SphericalPolygon"][c,{p1,…,pn}] represents a filled spherical polygon on a sphere centered at the point c. |
A spherical triangle:
In[1]:= |
![]() |
Show the spherical triangle:
In[2]:= |
![]() |
Out[2]= |
![]() |
A spherical rectangle:
In[3]:= |
![]() |
Show the spherical rectangle:
In[4]:= |
![]() |
Out[4]= |
![]() |
A spherical polygon with a specified sphere center:
In[5]:= |
![]() |
Show the polygon on a sphere:
In[6]:= |
![]() |
Out[6]= |
![]() |
Use directives to specify the face colors:
In[7]:= |
![]() |
Out[7]= |
![]() |
In[8]:= |
![]() |
Out[8]= |
![]() |
Specify the style of the edges:
In[9]:= |
![]() |
Out[9]= |
![]() |
Specify face and edge styling:
In[10]:= |
![]() |
Out[10]= |
![]() |
Show the edges of the spherical polygon:
In[11]:= |
![]() |
Out[11]= |
![]() |
Consecutive vertices of SphericalPolygon cannot be antipodal points:
In[13]:= |
![]() |
Out[13]= |
![]() |
SphericalPolygon does not directly support spherical digons:
In[14]:= |
![]() |
Out[14]= |
![]() |
To render a spherical digon, add the midpoints of the edges:
In[15]:= |
![]() |
Out[15]= |
![]() |
SphericalPolygon is best used for convex spherical polygons. Concave polygons might display artifacts:
In[16]:= |
![]() |
Out[16]= |
![]() |
Split the concave spherical polygon into two spherical triangles:
In[17]:= |
![]() |
Out[17]= |
![]() |
Random triangulation of a sphere:
In[18]:= |
![]() |
In[19]:= |
![]() |
Out[19]= |
![]() |
Use SphericalPolygon to depict a soccer ball:
In[20]:= |
![]() |
In[21]:= |
![]() |
Out[21]= |
![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License