Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the inverse tangent integral
ResourceFunction["ArcTanIntegral"][n,z] gives the inverse tangent integral function Tin(z). |
Evaluate numerically:
In[1]:= |
Out[1]= |
Plot over a subset of the reals:
In[2]:= |
Out[2]= |
Series expansion at the origin:
In[3]:= |
Out[3]= |
Simple exact values are generated automatically:
In[4]:= |
Out[4]= |
Evaluate for complex order and arguments:
In[5]:= |
Out[5]= |
Evaluate to high precision:
In[6]:= |
Out[6]= |
The precision of the output tracks the precision of the input:
In[7]:= |
Out[7]= |
ArcTanIntegral threads elementwise over lists:
In[8]:= |
Out[8]= |
Plot of the absolute value of the second-order inverse tangent integral in the complex plane:
In[9]:= |
Out[9]= |
For integer orders less than 2, ArcTanIntegral can be expressed in terms of elementary functions:
In[10]:= |
Out[10]= |
ArcTanIntegral can be expressed in terms of LerchPhi:
In[11]:= |
Out[11]= |
Derivatives of ArcTanIntegral can be expressed in terms of an ArcTanIntegral of lower order:
In[12]:= |
Out[12]= |
This work is licensed under a Creative Commons Attribution 4.0 International License