Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the bidiagonal decomposition of a numerical matrix
ResourceFunction["BidiagonalDecomposition"][m] gives the bidiagonal decomposition for a numerical matrix m as a list of matrices {q,b,p}, where q and p are orthonormal matrices and b is an upper bidiagonal matrix. |
Compute the bidiagonal decomposition for a 3×2 numerical matrix:
In[1]:= | ![]() |
Out[1]= | ![]() |
In[2]:= | ![]() |
Out[2]= | ![]() |
m is a 3×4 matrix:
In[3]:= | ![]() |
Find the bidiagonal decomposition of m using machine-number arithmetic:
In[4]:= | ![]() |
Out[4]= | ![]() |
In[5]:= | ![]() |
Out[5]= | ![]() |
Find the bidiagonal decomposition of m using 24-digit precision arithmetic:
In[6]:= | ![]() |
Out[6]= | ![]() |
The bidiagonal decomposition of a random complex-valued 2×4 matrix:
In[7]:= | ![]() |
Out[7]= | ![]() |
m is a random matrix with 3 columns:
In[8]:= | ![]() |
Out[8]= | ![]() |
Find the bidiagonal decomposition of m:
In[9]:= | ![]() |
Out[9]= | ![]() |
Verify that m is equal to q.b.ConjugateTranspose[p]:
In[10]:= | ![]() |
Out[10]= | ![]() |
Verify that q and p are unitary:
In[11]:= | ![]() |
Out[11]= | ![]() |
In[12]:= | ![]() |
Out[12]= | ![]() |
b has the same singular values as m:
In[13]:= | ![]() |
Out[13]= | ![]() |
In[14]:= | ![]() |
Out[14]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License