Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the bidiagonal decomposition of a numerical matrix
ResourceFunction["BidiagonalDecomposition"][m] gives the bidiagonal decomposition for a numerical matrix m as a list of matrices {q,b,p}, where q and p are orthonormal matrices and b is an upper bidiagonal matrix. |
Compute the bidiagonal decomposition for a 3×2 numerical matrix:
| In[1]:= |
| Out[1]= |
| In[2]:= |
| Out[2]= |
m is a 3×4 matrix:
| In[3]:= | ![]() |
Find the bidiagonal decomposition of m using machine-number arithmetic:
| In[4]:= |
| Out[4]= | ![]() |
| In[5]:= |
| Out[5]= | ![]() |
Find the bidiagonal decomposition of m using 24-digit precision arithmetic:
| In[6]:= |
| Out[6]= | ![]() |
The bidiagonal decomposition of a random complex-valued 2×4 matrix:
| In[7]:= |
| Out[7]= | ![]() |
m is a random matrix with 3 columns:
| In[8]:= |
| Out[8]= |
Find the bidiagonal decomposition of m:
| In[9]:= |
| Out[9]= | ![]() |
Verify that m is equal to q.b.ConjugateTranspose[p]:
| In[10]:= |
| Out[10]= |
Verify that q and p are unitary:
| In[11]:= |
| Out[11]= |
| In[12]:= |
| Out[12]= |
b has the same singular values as m:
| In[13]:= |
| Out[13]= |
| In[14]:= |
| Out[14]= |
This work is licensed under a Creative Commons Attribution 4.0 International License