Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Convert all nth roots in an expression, where n is an odd integer, to their real-valued nth roots
ResourceFunction["UseRealRoots"][expr] converts all nth roots in expr, where n is an odd integer, to their real-valued nth roots. Otherwise, it uses the principal roots in expr. |
UseRealRoots converts an odd integer root in an expression to an expression using Surd:
In[1]:= |
|
Out[1]= |
|
Unlike Surd, UseRealRoots evaluates even roots of negative real numbers:
In[2]:= |
|
Out[2]= |
|
In[3]:= |
|
Out[3]= |
|
Plot over a subset of the reals (compare this with the corresponding example on the Surd documentation page):
In[4]:= |
|
Out[4]= |
|
Compare a plot of the function f(x) with UseRealRoots[f(x)]:
In[5]:= |
|
Out[5]= |
|
Compare the real and imaginary parts of and UseRealRoots[] over the reals (compare this with the corresponding example on the Surd documentation page):
In[6]:= |
|
Out[6]= |
|
EnhancedPlot automatically incorporates UseRealRoots:
In[7]:= |
|
Out[7]= |
|
Compare with Plot:
In[8]:= |
|
Out[8]= |
|
UseRealRoots can be used on any expression and it threads elementwise over lists and matrices:
In[9]:= |
|
Out[9]= |
|
In[10]:= |
|
Out[10]= |
|
In[11]:= |
|
Out[11]= |
|
Use UseRealRoots with FindRoot:
In[12]:= |
|
Out[12]= |
|
Check:
In[13]:= |
|
Out[13]= |
|
UseRealRoots[x1/n] and Surd[x,n] are both defined for all real values when n is an odd positive integer:
In[14]:= |
|
Out[14]= |
|
Compare with Power:
In[15]:= |
|
Out[15]= |
|
For positive even integers n, UseRealRoots[x1/n] and Surd[x,n] are both real-valued for non-negative x:
In[16]:= |
|
Out[16]= |
|
For negative n, UseRealRoots[x1/n] and Surd[x,n] are both defined for all positive x:
In[17]:= |
|
Out[17]= |
|
UseRealRoots[x1/n] and Surd[x,n] both assume all real values when n is an odd positive integer:
In[18]:= |
|
Out[18]= |
|
For positive even integers n, the range of both UseRealRoots[x1/n] and Surd[x,n] is the set of non-negative real numbers:
In[19]:= |
|
Out[19]= |
|
For negative odd n, 0 is removed from the range:
In[20]:= |
|
Out[20]= |
|
The first derivative with respect to x:
In[21]:= |
|
Out[21]= |
|
Higher derivatives of an even root with respect to x using UseRealRoots:
In[22]:= |
|
Out[22]= |
|
Higher derivatives of an odd root with respect to x using UseRealRoots:
In[23]:= |
|
Out[23]= |
|
Using Surd:
In[24]:= |
|
Out[24]= |
|
Plot the higher derivatives computed using UseRealRoots:
In[25]:= |
|
Out[25]= |
|
Plot the higher derivatives computed using Surd:
In[26]:= |
|
Out[26]= |
|
Compute the indefinite integral:
In[27]:= |
|
Out[27]= |
|
Verify by differentiating:
In[28]:= |
|
Out[28]= |
|
Definite integral:
In[29]:= |
|
Out[29]= |
|
An improper integral:
In[30]:= |
|
Out[30]= |
|
This work is licensed under a Creative Commons Attribution 4.0 International License