Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Make a weighted connectivity graph using circular embedding
ResourceFunction["ChordDiagram"][graph] generates a chord diagram using a weighted graph. |
"Labels" | Automatic | choose the vertex labels |
"Colors" | Automatic | choose the ribbon colors for each edge |
"BackgroundOpacity" | 0.25 | set the background ribbon opacity |
"Interactive" | False | include interactive mouseover |
"TrimEdges" | 0 | trim edges with small weights |
A chord diagram with simple weighted graph:
In[1]:= | ![]() |
Out[1]= | ![]() |
By default, ChordDiagram uses VertexList as labels:
In[2]:= | ![]() |
In[3]:= | ![]() |
Out[3]= | ![]() |
In[4]:= | ![]() |
Out[4]= | ![]() |
Use an explicit list of strings to overwrite this:
In[5]:= | ![]() |
Out[5]= | ![]() |
For realistic datasets, many edges may suffer from small weights:
In[6]:= | ![]() |
Out[6]= | ![]() |
Use TrimEdges to drop the lowest edge weights:
In[7]:= | ![]() |
Out[7]= | ![]() |
Add basic interactivity using mouseovers:
In[8]:= | ![]() |
Out[8]= | ![]() |
Using a directed graph to show asymmetric ribbon widths:
In[9]:= | ![]() |
Add custom colors and labels:
In[10]:= | ![]() |
In[11]:= | ![]() |
Out[11]= | ![]() |
By default, the function accepts a weighted graph. If you instead have a weighted adjacency matrix, this can be converted to a weighted graph first:
Out[25]= | ![]() |
In[26]:= | ![]() |
In[27]:= | ![]() |
Out[27]= | ![]() |
In[28]:= | ![]() |
Out[28]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License