Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the final angle and spring length of a spring pendulum based on initial conditions
ResourceFunction["SpringPendulumFormula"][params,cond] computes the angle and spring length based on system parameters params and initial conditions cond. | |
ResourceFunction["SpringPendulumFormula"][property] returns the specified property of the spring pendulum formula. |
k | "k" | spring constant |
m | "m" | mass |
l0 | "l0" | spring equalibrium length |
li | "li" | initial spring length |
t | "t" | final time |
θi | "thetai" | initial angle from vertical |
"Formula" | equations for spring pendulum |
"QuantityVariableDimensions" | list of base dimensions for all variables |
"QuantityVariableNames" | English names for all variables |
"QuantityVariablePhysicalQuantities" | physical quantities for all variables |
"QuantityVariables" | list of all variables |
"QuantityVariableTable" | details on all variables |
Solve for the final spring length and final angle from the vertical for a spring pendulum:
In[1]:= | ![]() |
Out[1]= | ![]() |
Specify gravitational acceleration:
In[2]:= | ![]() |
Out[2]= | ![]() |
Examine the equations of motion for a spring pendulum:
In[3]:= | ![]() |
Out[3]= | ![]() |
Find the quantity variables used by the SpringPendulumFormula:
In[4]:= | ![]() |
Out[4]= | ![]() |
Obtain their formal names:
In[5]:= | ![]() |
Out[5]= | ![]() |
Derive the physical quantities and unit dimensions of the variables:
In[6]:= | ![]() |
Out[6]= | ![]() |
In[7]:= | ![]() |
Out[7]= | ![]() |
Examine a table combining all the information about the quantity variables used or derived by SpringPendulumFormula:
In[8]:= | ![]() |
Out[8]= | ![]() |
Plot angle and length evolution over time:
In[9]:= | ![]() |
In[10]:= | ![]() |
Out[10]= | ![]() |
In[11]:= | ![]() |
Out[11]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License