Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the final angle and spring length of a spring pendulum based on initial conditions
ResourceFunction["SpringPendulumFormula"][params,cond] computes the angle and spring length based on system parameters params and initial conditions cond. | |
ResourceFunction["SpringPendulumFormula"][property] returns the specified property of the spring pendulum formula. |
k | "k" | spring constant |
m | "m" | mass |
l0 | "l0" | spring equalibrium length |
li | "li" | initial spring length |
t | "t" | final time |
θi | "thetai" | initial angle from vertical |
"Formula" | equations for spring pendulum |
"QuantityVariableDimensions" | list of base dimensions for all variables |
"QuantityVariableNames" | English names for all variables |
"QuantityVariablePhysicalQuantities" | physical quantities for all variables |
"QuantityVariables" | list of all variables |
"QuantityVariableTable" | details on all variables |
Solve for the final spring length and final angle from the vertical for a spring pendulum:
In[1]:= |
Out[1]= |
Specify gravitational acceleration:
In[2]:= |
Out[2]= |
Examine the equations of motion for a spring pendulum:
In[3]:= |
Out[3]= |
Find the quantity variables used by the SpringPendulumFormula:
In[4]:= |
Out[4]= |
Obtain their formal names:
In[5]:= |
Out[5]= |
Derive the physical quantities and unit dimensions of the variables:
In[6]:= |
Out[6]= |
In[7]:= |
Out[7]= |
Examine a table combining all the information about the quantity variables used or derived by SpringPendulumFormula:
In[8]:= |
Out[8]= |
Plot angle and length evolution over time:
In[9]:= |
In[10]:= |
Out[10]= |
In[11]:= |
Out[11]= |
This work is licensed under a Creative Commons Attribution 4.0 International License