Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
A sigmoidal interpolating rational function
ResourceFunction["RationalSmoothStep"][x] gives a rational sigmoidal function between [0,1] for a position x in [0,1]. | |
ResourceFunction["RationalSmoothStep"][n,x] is the rational smoothstep function of order n at position x. |
Interpolate at a position on a step:
In[1]:= | ![]() |
Out[1]= | ![]() |
Show rational smooth steps for multiple orders:
In[2]:= | ![]() |
Out[2]= | ![]() |
Evaluate at an exact position:
In[3]:= | ![]() |
Out[3]= | ![]() |
At a numeric position:
In[4]:= | ![]() |
Out[4]= | ![]() |
RationalSmoothStep threads over lists:
In[5]:= | ![]() |
Out[5]= | ![]() |
In[6]:= | ![]() |
Out[6]= | ![]() |
Use RationalSmoothStep to implement a "smooth" version of Hue (reference):
In[7]:= | ![]() |
In[8]:= | ![]() |
Out[8]= | ![]() |
In[9]:= | ![]() |
Out[9]= | ![]() |
RationalSmoothStep satisfies a symmetry relation:
In[10]:= | ![]() |
Out[10]= | ![]() |
Use RationalSmoothStep to demonstrate "ease-in/ease-out":
In[11]:= | ![]() |
Out[11]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License