Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Return the graph specified in Lederberg–Coxeter–Fruchte notation
ResourceFunction["LCFGraph"][n,l,r] returns the n vertex graph specified in LCF ([l]r) notation. |

Generate the Nauru graph:
| In[1]:= |
| Out[1]= | ![]() |
LCFGraph works with undirected graphs:
| In[2]:= |
| Out[2]= | ![]() |
Directed graphs:
| In[3]:= |
| Out[3]= | ![]() |
Specify an annotation for vertices:
| In[4]:= |
| Out[4]= | ![]() |
Edges:
| In[5]:= |
| Out[5]= | ![]() |
Highlight the vertex 1:
| In[6]:= |
| Out[6]= | ![]() |
Highlight the edge 23:
| In[7]:= |
| Out[7]= | ![]() |
Highlight the vertices and edges:
| In[8]:= |
| Out[8]= | ![]() |
Use a common base theme:
| In[9]:= |
| Out[9]= | ![]() |
Use a monochrome theme:
| In[10]:= |
| Out[10]= | ![]() |
By default, the size of vertices is computed automatically:
| In[11]:= |
| Out[11]= | ![]() |
Specify the size of all vertices using symbolic vertex size:
| In[12]:= |
| Out[12]= | ![]() |
Specify the size for individual vertices:
| In[13]:= |
| Out[13]= | ![]() |
Style individual vertices:
| In[14]:= |
| Out[14]= | ![]() |
Check the isomorphism of some of the standard known LCFGraphs:
| In[15]:= |
| Out[15]= |
| In[16]:= |
| Out[16]= |
| In[17]:= |
| Out[17]= |
| In[18]:= |
| Out[18]= |
| In[19]:= |
| Out[19]= |
| In[20]:= |
| Out[20]= |
| In[21]:= | ![]() |
| Out[21]= |
| In[22]:= |
| Out[22]= |
| In[23]:= |
| Out[23]= |
| In[24]:= |
| Out[24]= |
| In[25]:= |
| Out[25]= |
| In[26]:= | ![]() |
| Out[26]= |
| In[27]:= |
| Out[27]= |
| In[28]:= |
| Out[28]= |
| In[29]:= |
| Out[29]= |
| In[30]:= |
| Out[30]= |
| In[31]:= |
| Out[31]= |
| In[32]:= | ![]() |
| Out[32]= |
| In[33]:= | ![]() |
| Out[33]= |
| In[34]:= | ![]() |
| Out[34]= |
| In[35]:= | ![]() |
| Out[35]= |
Wolfram Language 13.0 (December 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License