Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Nielsen function G
ResourceFunction["NielsenG"][z] gives the Nielsen function g(z). |
Evaluate numerically:
In[1]:= |
Out[1]= |
Plot over a subset of the reals:
In[2]:= |
Out[2]= |
Series expansion at the origin:
In[3]:= |
Out[3]= |
Evaluate for complex arguments:
In[4]:= |
Out[4]= |
Evaluate to high precision:
In[5]:= |
Out[5]= |
The precision of the output tracks the precision of the input:
In[6]:= |
Out[6]= |
NielsenG threads elementwise over lists:
In[7]:= |
Out[7]= |
Simple exact values are generated automatically:
In[8]:= |
Out[8]= |
In[9]:= |
Out[9]= |
Plot the logarithm of the absolute value in the complex plane:
In[10]:= |
Out[10]= |
Express CosIntegral and SinIntegral in terms of NielsenF and NielsenG:
In[11]:= |
Out[11]= |
In[12]:= |
Out[12]= |
NielsenG is the Laplace transform of :
In[13]:= |
Out[13]= |
A representation of NielsenG in terms of MeijerG:
In[14]:= |
Out[14]= |
NielsenG is automatically expanded in terms of CosIntegral and SinIntegral:
In[15]:= |
Out[15]= |
Plugging in a large complex argument after expansion leads to inaccurate numerical results:
In[16]:= |
Out[16]= |
Evaluate the function directly:
In[17]:= |
Out[17]= |
This work is licensed under a Creative Commons Attribution 4.0 International License