Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Calculate fractional integrals
ResourceFunction["FractionalIntegrate"][f,{x,α}] gives the α-fractional integral of the function f with respect to variable x.  | 
Semi-integral of 2x:
| In[1]:= | 
| Out[1]= | 
Taking the semi-integral twice yields the standard antiderivative:
| In[2]:= | 
| Out[2]= | 
If α=1, the result is the usual integral:
| In[3]:= | 
| Out[3]= | 
Semi-integral of elementary functions:
| In[4]:= | 
| Out[4]= | ![]()  | 
| In[5]:= | 
| Out[5]= | 
| In[6]:= | 
| Out[6]= | 
Semi-integral of trig functions:
| In[7]:= | 
| Out[7]= | 
| In[8]:= | 
| Out[8]= | 
Semi-integral of inverse trig functions:
| In[9]:= | 
| Out[9]= | 
| In[10]:= | 
| Out[10]= | 
More exotic fractional integrals:
| In[11]:= | 
| Out[11]= | ![]()  | 
Not all integrals can be computed:
| In[12]:= | 
| Out[12]= | 
This work is licensed under a Creative Commons Attribution 4.0 International License