Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Find the equation for an ellipse given two foci and a point
ResourceFunction["FociPointEllipse"][{f1,f2,p},{x,y}] returns the ellipse A x2+B x y+C y2+D x+E y+F in the variables x and y, given the foci f1,f2 and a point p through which the ellipse passes. | |
ResourceFunction["FociPointEllipse"][{f1,f2,p},t] returns a parametric equation in the variable t. | |
ResourceFunction["FociPointEllipse"][{f1,f2,p}] returns an Ellipsoid object representing the ellipse. |
Find the Cartesian equation of an ellipse with foci (3,3) and
) that goes through point
):
| In[1]:= | ![]() |
| Out[2]= |
Show the ellipse:
| In[3]:= |
| Out[3]= | ![]() |
Generate the parametric equations of an ellipse with foci (3,3) and
) that goes through point
):
| In[4]:= | ![]() |
| Out[5]= | ![]() |
Show the ellipse:
| In[6]:= |
| Out[6]= | ![]() |
Generate the corresponding Ellipsoid object:
| In[7]:= |
| Out[7]= |
Show the ellipse:
| In[8]:= |
| Out[8]= | ![]() |
Use a different set of variables:
| In[9]:= |
| Out[9]= |
Use formal variables:
| In[10]:= |
| Out[10]= |
Use FociPointEllipse to generate the implicit Cartesian equation of an ellipse:
| In[11]:= |
| Out[12]= |
Use GroebnerBasis to get an equivalent result:
| In[13]:= | ![]() |
| Out[13]= |
Generate an equivalent parametric equation:
| In[14]:= |
| Out[14]= |
Use GroebnerBasis to derive the implicit Cartesian equation from the parametric equation:
| In[15]:= |
| Out[15]= |
Use the resource function EllipseProperties to generate properties of the ellipse:
| In[16]:= |
| Out[16]= | ![]() |
Get an ellipse equation:
| In[17]:= |
| Out[17]= |
Show positions for coefficients in A x2+B x y+C y2+D x+E y+F=0:
| In[18]:= |
| Out[18]= |
Get the coefficients:
| In[19]:= |
| Out[19]= |
See the coefficients in the standard order:
| In[20]:= |
| Out[20]= |
Construct an ellipse from given foci and a point:
| In[21]:= | ![]() |
| Out[22]= |
Use three mysterious points to create a complex cubic, take the derivative and solve the quadratic to find foci that happen to be F and G:
| In[23]:= |
| Out[24]= |
In Marden's theorem, the above step finds the foci of an inellipse that is tangent to the midpoints of the sides of the triangle generated by vertices PQR:
| In[25]:= | ![]() |
| Out[25]= | ![]() |
The resulting inellipse is a scaled version of the Steiner circumellipse, with a scaling factor of 1/2. Use the resource function SteinerCircumellipse to produce an equivalent figure:
| In[26]:= | ![]() |
| Out[27]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License