Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Test whether an integer is automorphic in a given base or not
ResourceFunction["AutomorphicIntegerQ"][b] represents an operator form of ResourceFunction["AutomorphicIntegerQ"] that can be applied to an integer. |
5 is automorphic in base 10:
In[1]:= | ![]() |
Out[1]= | ![]() |
But 4 is not:
In[2]:= | ![]() |
Out[2]= | ![]() |
0 and 1 are automorphic in every base:
In[3]:= | ![]() |
Out[3]= | ![]() |
AutomorphicIntegerQ threads over a List:
In[4]:= | ![]() |
Out[4]= | ![]() |
Using the operator form:
In[5]:= | ![]() |
Out[5]= | ![]() |
A sequence of base-10 automorphic numbers is defined in OEIS:
In[6]:= | ![]() |
Out[6]= | ![]() |
Check it:
In[7]:= | ![]() |
Out[7]= | ![]() |
Highlight the automorphic integers up to 100 in base 6:
In[8]:= | ![]() |
Out[8]= | ![]() |
Wolfram Language 14.0 (January 2024) or above
This work is licensed under a Creative Commons Attribution 4.0 International License