Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Epstein–Hubbell integral
ResourceFunction["EpsteinHubbellOmega"][n,m] gives the Epstein–Hubbell integral Ωn(m). |
Evaluate numerically:
| In[1]:= |
| Out[1]= |
Plot Ω2(m):
| In[2]:= |
| Out[2]= | ![]() |
Series at the origin:
| In[3]:= |
| Out[3]= |
Evaluate for complex arguments and orders:
| In[4]:= |
| Out[4]= |
Evaluate to high precision:
| In[5]:= |
| Out[5]= |
The precision of the output tracks the precision of the input:
| In[6]:= |
| Out[6]= |
EpsteinHubbellOmega threads elementwise over lists:
| In[7]:= |
| Out[7]= |
Log plot of a family of Epstein–Hubbell integrals:
| In[8]:= | ![]() |
| Out[8]= | ![]() |
For integer n, EpsteinHubbellOmega can be expressed in terms of EllipticE and EllipticK:
| In[9]:= |
| Out[9]= | ![]() |
For integer n, EpsteinHubbellOmega can be expressed in terms of half-integer order LegendreP:
| In[10]:= | ![]() |
| Out[10]= |
For integer n, EpsteinHubbellOmega can be expressed in terms of LegendreQ:
| In[11]:= | ![]() |
| Out[11]= |
Express an Epstein–Hubbell integral of noninteger order in terms of simpler functions:
| In[12]:= |
| Out[12]= | ![]() |
Compare EpsteinHubbellOmega with the integral definition:
| In[13]:= | ![]() |
| Out[13]= |
This work is licensed under a Creative Commons Attribution 4.0 International License