Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Eisenstein series
ResourceFunction["EisensteinE"][n,q] gives the Eisenstein series En(q). |
Evaluate numerically:
| In[1]:= |
| Out[1]= |
Plot E8(q) over a subset of the reals:
| In[2]:= |
| Out[2]= | ![]() |
Series expansion at the origin:
| In[3]:= |
| Out[3]= |
Evaluate for complex arguments:
| In[4]:= |
| Out[4]= |
Evaluate to high precision:
| In[5]:= |
| Out[5]= |
EisensteinE threads elementwise over lists:
| In[6]:= |
| Out[6]= | ![]() |
Simple exact values are generated automatically:
| In[7]:= |
| Out[7]= |
Plot near the unit circle in the complex q-plane:
| In[8]:= |
| Out[8]= | ![]() |
| In[9]:= |
| Out[9]= | ![]() |
EisensteinE[n,q] for n>2 can be expressed in terms of EllipticTheta:
| In[10]:= |
| Out[10]= | ![]() |
WeierstrassInvariants can be expressed in terms of EisensteinE[4,q] and EisensteinE[6,q]:
| In[11]:= |
| Out[12]= |
| In[13]:= |
| Out[13]= |
EisensteinE[n,q] is only defined for positive even n:
| In[14]:= |
| Out[14]= |
Visualize a function with a boundary of analyticity:
| In[15]:= | ![]() |
| Out[15]= | ![]() |
| In[16]:= | ![]() |
| Out[16]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License