Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Eisenstein series
ResourceFunction["EisensteinE"][n,q] gives the Eisenstein series En(q). |
Evaluate numerically:
In[1]:= | ![]() |
Out[1]= | ![]() |
Plot E8(q) over a subset of the reals:
In[2]:= | ![]() |
Out[2]= | ![]() |
Series expansion at the origin:
In[3]:= | ![]() |
Out[3]= | ![]() |
Evaluate for complex arguments:
In[4]:= | ![]() |
Out[4]= | ![]() |
Evaluate to high precision:
In[5]:= | ![]() |
Out[5]= | ![]() |
EisensteinE threads elementwise over lists:
In[6]:= | ![]() |
Out[6]= | ![]() |
Simple exact values are generated automatically:
In[7]:= | ![]() |
Out[7]= | ![]() |
Plot near the unit circle in the complex q-plane:
In[8]:= | ![]() |
Out[8]= | ![]() |
In[9]:= | ![]() |
Out[9]= | ![]() |
EisensteinE[n,q] for n>2 can be expressed in terms of EllipticTheta:
In[10]:= | ![]() |
Out[10]= | ![]() |
WeierstrassInvariants can be expressed in terms of EisensteinE[4,q] and EisensteinE[6,q]:
In[11]:= | ![]() |
Out[12]= | ![]() |
In[13]:= | ![]() |
Out[13]= | ![]() |
EisensteinE[n,q] is only defined for positive even n:
In[14]:= | ![]() |
Out[14]= | ![]() |
Visualize a function with a boundary of analyticity:
In[15]:= | ![]() |
Out[15]= | ![]() |
In[16]:= | ![]() |
Out[16]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License