Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Return the Christoffel symbol for a given metric
ResourceFunction["ChristoffelSymbol"][metric,coords] creates the Christoffel symbol of the second kind for metric specified in coordinate variables coords. | |
ResourceFunction["ChristoffelSymbol"][metric,coords,"Kind"→"First"] creates the Christoffel symbol of the first kind. |
Christoffel symbol of the second kind for Euclidean cylindrical coordinates:
| In[1]:= | ![]() |
| Out[1]= | ![]() |
| In[2]:= |
| Out[2]= |
Christoffel symbol of the first kind for cylindrical coordinates:
| In[3]:= | ![]() |
| Out[4]= | ![]() |
Christoffel symbols of a sphere:
| In[5]:= | ![]() |
| Out[6]= | ![]() |
| In[7]:= | ![]() |
| Out[10]= | ![]() |
Describe a toroidal surface in ambient Cartesian space with surface coordinates:
| In[11]:= | ![]() |
Plot the surface:
| In[12]:= |
| Out[12]= | ![]() |
Form a covariant basis on the surface:
| In[13]:= |
| Out[13]= |
Get the covariant surface metric tensor:
| In[14]:= |
| Out[14]= | ![]() |
This leads to the related Christoffel symbol of the second kind of the toroidal surface:
| In[15]:= |
| Out[17]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License