Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the elliptic rational function
ResourceFunction["EllipticRationalR"][n,ξ,x] gives the elliptic rational function Rn(ξ,x). |
Evaluate numerically:
| In[1]:= |
| Out[1]= |
Plot R5(1.1,x):
| In[2]:= |
| Out[2]= | ![]() |
Evaluate symbolically:
| In[3]:= |
| Out[3]= | ![]() |
Evaluate to high precision:
| In[4]:= |
| Out[4]= |
The precision of the output tracks the precision of the input:
| In[5]:= |
| Out[5]= |
EllipticRationalR threads elementwise over lists:
| In[6]:= |
| Out[6]= |
Compare an elliptic rational function and a Chebyshev polynomial:
| In[7]:= | ![]() |
| Out[7]= | ![]() |
Use the elliptic rational function to construct the best minimax approximation of a unit square pulse:
| In[8]:= | ![]() |
| Out[8]= | ![]() |
Compare with an approximation using ChebyshevT:
| In[9]:= | ![]() |
| Out[9]= | ![]() |
Compare EllipticRationalR with the definition:
| In[10]:= | ![]() |
| Out[10]= |
Verify the inversion identity:
| In[11]:= | ![]() |
| Out[11]= |
This work is licensed under a Creative Commons Attribution 4.0 International License