Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate Bulirsch's incomplete elliptic integral of the first kind
ResourceFunction["BulirschEL1"][x,m] gives Bulirsch's incomplete elliptic integral of the first kind |
Evaluate numerically:
| In[1]:= |
|
| Out[1]= |
|
| In[2]:= |
|
| Out[2]= |
|
Evaluate numerically for complex arguments:
| In[3]:= |
|
| Out[3]= |
|
Evaluate to high precision:
| In[4]:= |
|
| Out[4]= |
|
The precision of the output tracks the precision of the input:
| In[5]:= |
|
| Out[5]= |
|
Simple exact results are generated automatically:
| In[6]:= |
|
| Out[6]= |
|
| In[7]:= |
|
| Out[7]= |
|
BulirschEL1 threads elementwise over lists:
| In[8]:= |
|
| Out[8]= |
|
Series expansion of BulirschEL1 at the origin:
| In[9]:= |
|
| Out[9]= |
|
Arc length of a lemniscate of Bernoulli:
| In[10]:= |
|
| Out[10]= |
|
Compare with the result of ArcLength:
| In[11]:= |
|
| Out[11]= |
|
Calculate the reaction time needed for an autocatalytic termolecular reaction system:
| In[12]:= |
|
| Out[12]= |
|
EllipticF can be expressed in terms of BulirschEL1:
| In[13]:= |
|
| Out[13]= |
|
EllipticK can be expressed in terms of BulirschEL1:
| In[14]:= |
|
| Out[14]= |
|
InverseJacobiSN can be expressed in terms of BulirschEL1:
| In[15]:= |
|
| Out[15]= |
|
Wolfram Language 12.3 (May 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License