Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate Bulirsch's incomplete elliptic integral of the first kind
ResourceFunction["BulirschEL1"][x,m] gives Bulirsch's incomplete elliptic integral of the first kind   | 
Evaluate numerically:
| In[1]:= | 
       | 
    
| Out[1]= | 
       | 
    
| In[2]:= | 
       | 
    
| Out[2]= | 
       | 
    
Evaluate numerically for complex arguments:
| In[3]:= | 
       | 
    
| Out[3]= | 
       | 
    
Evaluate to high precision:
| In[4]:= | 
       | 
    
| Out[4]= | 
       | 
    
The precision of the output tracks the precision of the input:
| In[5]:= | 
       | 
    
| Out[5]= | 
       | 
    
Simple exact results are generated automatically:
| In[6]:= | 
       | 
    
| Out[6]= | 
       | 
    
| In[7]:= | 
       | 
    
| Out[7]= | 
       | 
    
BulirschEL1 threads elementwise over lists:
| In[8]:= | 
       | 
    
| Out[8]= | 
       | 
    
Series expansion of BulirschEL1 at the origin:
| In[9]:= | 
       | 
    
| Out[9]= | 
       | 
    
Arc length of a lemniscate of Bernoulli:
| In[10]:= | 
       | 
    
| Out[10]= | 
       | 
    
Compare with the result of ArcLength:
| In[11]:= | 
       | 
    
| Out[11]= | 
       | 
    
Calculate the reaction time needed for an autocatalytic termolecular reaction system:
| In[12]:= | 
       
       | 
    
| Out[12]= | 
       | 
    
EllipticF can be expressed in terms of BulirschEL1:
| In[13]:= | 
       | 
    
| Out[13]= | 
       | 
    
EllipticK can be expressed in terms of BulirschEL1:
| In[14]:= | 
       | 
    
| Out[14]= | 
       | 
    
InverseJacobiSN can be expressed in terms of BulirschEL1:
| In[15]:= | 
       | 
    
| Out[15]= | 
       | 
    
Wolfram Language 12.3 (May 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License