Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate Bulirsch's incomplete elliptic integral of the second kind
ResourceFunction["BulirschEL2"][x,m,a,b] gives Bulirsch's incomplete elliptic integral of the second kind . |
Evaluate numerically:
In[1]:= |
|
Out[1]= |
|
In[2]:= |
|
Out[2]= |
|
Evaluate numerically for complex arguments:
In[3]:= |
|
Out[3]= |
|
Evaluate to high precision:
In[4]:= |
|
Out[4]= |
|
The precision of the output tracks the precision of the input:
In[5]:= |
|
Out[5]= |
|
Simple exact results are generated automatically:
In[6]:= |
|
Out[6]= |
|
In[7]:= |
|
Out[7]= |
|
BulirschEL2 threads elementwise over lists:
In[8]:= |
|
Out[8]= |
|
Series expansion of BulirschEL2 at the origin:
In[9]:= |
|
Out[9]= |
|
Distance along a meridian of the Earth:
In[10]:= |
|
Out[10]= |
|
Compare with the result of GeoDistance:
In[11]:= |
|
Out[11]= |
|
Calculate the surface area of a triaxial ellipsoid:
In[12]:= |
|
The area of an ellipsoid with semiaxes 3, 2, 1:
In[13]:= |
|
Out[13]= |
|
Use RegionMeasure to calculate the surface area of the ellipsoid:
In[14]:= |
|
Out[14]= |
|
Parametrization of a Mylar balloon (two flat sheets of plastic sewn together at their circumference and then inflated):
In[15]:= |
|
Plot the resulting balloon:
In[16]:= |
|
Out[16]= |
|
Both incomplete and complete cases of EllipticE can be expressed in terms of BulirschEL2:
In[17]:= |
|
Out[17]= |
|
In[18]:= |
|
Out[18]= |
|
EllipticK and EllipticF can be expressed in terms of BulirschEL2:
In[19]:= |
|
Out[19]= |
|
In[20]:= |
|
Out[20]= |
|
BulirschEL2 can be used to represent linear combinations of elliptic integrals of the first and second kinds:
In[21]:= |
|
Out[21]= |
|
In[22]:= |
|
Out[22]= |
|
Magnetic field lines of a ring current in cylindrical coordinates:
In[23]:= |
|
Out[23]= |
|
Wolfram Language 12.3 (May 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License