Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Takagi function
ResourceFunction["TakagiT"][x] gives the Takagi function T(x). |
Plot the Takagi function:
In[1]:= | ![]() |
Out[1]= | ![]() |
Evaluate at integers or rationals:
In[2]:= | ![]() |
Out[2]= | ![]() |
In[3]:= | ![]() |
Out[3]= | ![]() |
Evaluate at inexact real numbers:
In[4]:= | ![]() |
Out[4]= | ![]() |
In[5]:= | ![]() |
Out[5]= | ![]() |
Parity transformation is automatically applied:
In[6]:= | ![]() |
Out[6]= | ![]() |
TakagiT threads elementwise over lists:
In[7]:= | ![]() |
Out[7]= | ![]() |
Compare the Takagi function with a sum of the successive iterates of the tent map:
In[8]:= | ![]() |
In[9]:= | ![]() |
Out[9]= | ![]() |
Compare the Takagi function with its Fourier series approximation:
In[10]:= | ![]() |
In[11]:= | ![]() |
Out[11]= | ![]() |
The Takagi function satisfies the reflection identity T(1-x)=T(x) for 0≤x≤1:
In[12]:= | ![]() |
Out[12]= | ![]() |
The Takagi function satisfies the self-similarity identity T(x/2)=x/2+T(x)/2 for 0≤x≤1:
In[13]:= | ![]() |
Out[13]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License