Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Takagi function
ResourceFunction["TakagiT"][x] gives the Takagi function T(x). |
Plot the Takagi function:
| In[1]:= |
| Out[1]= | ![]() |
Evaluate at integers or rationals:
| In[2]:= |
| Out[2]= |
| In[3]:= |
| Out[3]= |
Evaluate at inexact real numbers:
| In[4]:= |
| Out[4]= |
| In[5]:= |
| Out[5]= |
Parity transformation is automatically applied:
| In[6]:= |
| Out[6]= |
TakagiT threads elementwise over lists:
| In[7]:= |
| Out[7]= |
Compare the Takagi function with a sum of the successive iterates of the tent map:
| In[8]:= |
| In[9]:= | ![]() |
| Out[9]= | ![]() |
Compare the Takagi function with its Fourier series approximation:
| In[10]:= | ![]() |
| In[11]:= |
| Out[11]= | ![]() |
The Takagi function satisfies the reflection identity T(1-x)=T(x) for 0≤x≤1:
| In[12]:= |
| Out[12]= | ![]() |
The Takagi function satisfies the self-similarity identity T(x/2)=x/2+T(x)/2 for 0≤x≤1:
| In[13]:= |
| Out[13]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License