Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the logarithmic norm of a square matrix
ResourceFunction["LogarithmicNorm"][m,p] gives the logarithmic p‐norm of the matrix m. |
Logarithmic 1-norm of a 3×3 matrix:
In[1]:= | ![]() |
Out[1]= | ![]() |
Logarithmic ∞-norm of a 3×3 matrix:
In[2]:= | ![]() |
Out[2]= | ![]() |
Logarithmic 2-norm of a 3×3 matrix:
In[3]:= | ![]() |
Out[3]= | ![]() |
A 3×3 matrix:
In[4]:= | ![]() |
Evaluate the logarithmic norm with exact arithmetic:
In[5]:= | ![]() |
Out[5]= | ![]() |
Evaluate the logarithmic norm with machine arithmetic:
In[6]:= | ![]() |
Out[6]= | ![]() |
Evaluate the logarithmic norm with 20digit arbitrary precision arithmetic:
In[7]:= | ![]() |
Out[7]= | ![]() |
Logarithmic norm of a sparse matrix:
In[8]:= | ![]() |
Out[8]= | ![]() |
The logarithmic norm can be negative, and is thus not a matrix norm:
In[9]:= | ![]() |
Out[9]= | ![]() |
The logarithmic 2-norm of m is equal to the largest eigenvalue of :
In[10]:= | ![]() |
Out[10]= | ![]() |
In[11]:= | ![]() |
Out[11]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License