Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the logarithmic norm of a square matrix
ResourceFunction["LogarithmicNorm"][m,p] gives the logarithmic p‐norm of the matrix m.  | 
Logarithmic 1-norm of a 3×3 matrix:
| In[1]:= | 
| Out[1]= | 
Logarithmic ∞-norm of a 3×3 matrix:
| In[2]:= | 
| Out[2]= | 
Logarithmic 2-norm of a 3×3 matrix:
| In[3]:= | 
| Out[3]= | 
A 3×3 matrix:
| In[4]:= | 
Evaluate the logarithmic norm with exact arithmetic:
| In[5]:= | 
| Out[5]= | 
Evaluate the logarithmic norm with machine arithmetic:
| In[6]:= | 
| Out[6]= | 
Evaluate the logarithmic norm with 20digit arbitrary precision arithmetic:
| In[7]:= | 
| Out[7]= | 
Logarithmic norm of a sparse matrix:
| In[8]:= | 
| Out[8]= | 
The logarithmic norm can be negative, and is thus not a matrix norm:
| In[9]:= | 
| Out[9]= | 
The logarithmic 2-norm of m is equal to the largest eigenvalue of 
:
| In[10]:= | 
| Out[10]= | 
| In[11]:= | 
| Out[11]= | 
This work is licensed under a Creative Commons Attribution 4.0 International License