Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Jacobi epsilon function
ResourceFunction["JacobiEpsilon"][u,m] gives the Jacobi epsilon function ε(u|m). |
Evaluate JacobiEpsilon numerically:
In[1]:= | ![]() |
Out[1]= | ![]() |
Plot the Jacobi epsilon function over a subset of the reals:
In[2]:= | ![]() |
Out[2]= | ![]() |
Series expansion about the origin:
In[3]:= | ![]() |
Out[3]= | ![]() |
Evaluate for complex arguments:
In[4]:= | ![]() |
Out[4]= | ![]() |
Evaluate to high precision:
In[5]:= | ![]() |
Out[5]= | ![]() |
The precision of the output tracks the precision of the input:
In[6]:= | ![]() |
Out[6]= | ![]() |
JacobiEpsilon threads elementwise over lists:
In[7]:= | ![]() |
Out[7]= | ![]() |
Simple exact values are generated automatically:
In[8]:= | ![]() |
Out[8]= | ![]() |
In[9]:= | ![]() |
Out[9]= | ![]() |
Parity transformation is automatically applied:
In[10]:= | ![]() |
Out[10]= | ![]() |
Plot the Jacobi epsilon function over the complex plane:
In[11]:= | ![]() |
Out[11]= | ![]() |
Motion of a charged particle in a linear magnetic field:
In[12]:= | ![]() |
Check the solution in Newton's equations of motion with Lorentz force:
In[13]:= | ![]() |
Out[13]= | ![]() |
Plot particle trajectories for various initial velocities:
In[14]:= | ![]() |
Out[14]= | ![]() |
Parametrization of a rotating elastic rod (fixed at the origin):
In[15]:= | ![]() |
Plot the shape of the deformed rod:
In[16]:= | ![]() |
Out[16]= | ![]() |
ε(u|m) is a meromorphic extension of the EllipticE function :
In[17]:= | ![]() |
Out[17]= | ![]() |
In[18]:= | ![]() |
Out[18]= | ![]() |
Machine precision is not sufficient to obtain the correct result:
In[19]:= | ![]() |
Out[19]= | ![]() |
Use arbitrary-precision arithmetic instead:
In[20]:= | ![]() |
Out[20]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License