Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Jacobi epsilon function
ResourceFunction["JacobiEpsilon"][u,m] gives the Jacobi epsilon function ε(u|m). |
Evaluate JacobiEpsilon numerically:
| In[1]:= |
| Out[1]= |
Plot the Jacobi epsilon function over a subset of the reals:
| In[2]:= |
| Out[2]= | ![]() |
Series expansion about the origin:
| In[3]:= |
| Out[3]= |
Evaluate for complex arguments:
| In[4]:= |
| Out[4]= |
Evaluate to high precision:
| In[5]:= |
| Out[5]= |
The precision of the output tracks the precision of the input:
| In[6]:= |
| Out[6]= |
JacobiEpsilon threads elementwise over lists:
| In[7]:= |
| Out[7]= |
Simple exact values are generated automatically:
| In[8]:= |
| Out[8]= |
| In[9]:= |
| Out[9]= |
Parity transformation is automatically applied:
| In[10]:= |
| Out[10]= |
Plot the Jacobi epsilon function over the complex plane:
| In[11]:= | ![]() |
| Out[11]= | ![]() |
Motion of a charged particle in a linear magnetic field:
| In[12]:= | ![]() |
Check the solution in Newton's equations of motion with Lorentz force:
| In[13]:= |
| Out[13]= |
Plot particle trajectories for various initial velocities:
| In[14]:= |
| Out[14]= | ![]() |
Parametrization of a rotating elastic rod (fixed at the origin):
| In[15]:= |
Plot the shape of the deformed rod:
| In[16]:= |
| Out[16]= | ![]() |
ε(u|m) is a meromorphic extension of the EllipticE function
:
| In[17]:= | ![]() |
| Out[17]= | ![]() |
| In[18]:= | ![]() |
| Out[18]= | ![]() |
Machine precision is not sufficient to obtain the correct result:
| In[19]:= |
| Out[19]= |
Use arbitrary-precision arithmetic instead:
| In[20]:= |
| Out[20]= |
This work is licensed under a Creative Commons Attribution 4.0 International License