Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Generate the Jacobi matrix corresponding to an orthogonal polynomial
ResourceFunction["JacobiMatrix"][n,poly] yields the nth order Jacobi matrix corresponding to the orthogonal polynomial pn(x) represented by poly. |
"ChebyshevFirst" | Chebyshev polynomial of the first kind ChebyshevT[n,x] |
"ChebyshevSecond" | Chebyshev polynomial of the second kind ChebyshevU[n,x] |
"Hermite" | Hermite polynomial HermiteH[n,x] |
"Laguerre" | Laguerre polynomial LaguerreL[n,x] |
"Legendre" | Legendre polynomial LegendreP[n,x] |
{"Gegenbauer",m} | Gegenbauer polynomial GegenbauerC[n,m,z] |
{"Laguerre",a} | associated Laguerre polynomial LaguerreL[n,a,x] |
{"Jacobi",a,b} | Jacobi polynomial JacobiP[n,a,b,x] |
The Jacobi matrix corresponding to a Legendre polynomial:
In[1]:= |
|
Out[1]= |
|
Jacobi matrix of a Jacobi polynomial with symbolic parameters:
In[2]:= |
|
Out[2]= |
|
An equivalent specification:
In[3]:= |
|
Out[3]= |
|
Symmetric and unsymmetric Jacobi matrices for an associated Laguerre polynomial:
In[4]:= |
|
Out[4]= |
|
Find the roots of an orthogonal polynomial by computing the eigenvalues of a Jacobi matrix:
In[5]:= |
|
Out[5]= |
|
Compare with the result of using NSolve:
In[6]:= |
|
Out[6]= |
|
The characteristic polynomial of a Jacobi matrix is a scalar multiple of the associated orthogonal polynomial:
In[7]:= |
|
Out[7]= |
|
In[8]:= |
|
Out[8]= |
|
The unsymmetric and symmetric Jacobi matrices are related to each other through a similarity transformation:
In[9]:= |
|
Out[9]= |
|
This work is licensed under a Creative Commons Attribution 4.0 International License