Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Get a numerically sorted list of abscissa-weight pairs for generalized Gaussian quadrature
ResourceFunction["GeneralizedGaussianQuadratureWeights"][n,poly] gives a list of the n pairs {xi,wi} of the elementary n-point Gaussian quadrature formula associated with the orthogonal polynomial represented by poly, where wi is the weight of the abscissa xi. | |
ResourceFunction["GeneralizedGaussianQuadratureWeights"][n,poly,prec] uses the working precision prec. |
"ChebyshevFirst" | Gauss–Chebyshev quadrature of the first kind, ![]() |
"ChebyshevSecond" | Gauss–Chebyshev quadrature of the second kind, ![]() |
"Hermite" | Gauss–Hermite quadrature, ![]() |
"Laguerre" | Gauss–Laguerre quadrature, ![]() |
"Legendre" | Gauss–Legendre quadrature, ![]() |
{"Gegenbauer",m} | Gauss–Gegenbauer quadrature, ![]() |
{"Laguerre",a} | generalized Gauss–Laguerre quadrature, ![]() |
{"Jacobi",a,b} | Gauss–Jacobi quadrature, ![]() |
Generate the abscissas and weights for three-point Gauss–Legendre quadrature:
In[1]:= | ![]() |
Out[1]= | ![]() |
Use 25-digit precision:
In[2]:= | ![]() |
Out[2]= | ![]() |
Generate a four-point Gauss-Jacobi quadrature with specific values of a and b:
In[3]:= | ![]() |
Out[3]= | ![]() |
An equivalent specification:
In[4]:= | ![]() |
Out[4]= | ![]() |
Use generalized Gauss–Laguerre quadrature to approximate the integral :
In[5]:= | ![]() |
Out[5]= | ![]() |
Compare with the exact answer:
In[6]:= | ![]() |
Out[6]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License