Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
A sigmoidal interpolation function
ResourceFunction["SmoothStep"][x] returns a sigmoidal, Hermite interpolation between [0,1] for x on [0,1]. | |
ResourceFunction["SmoothStep"][x,{min,max}] returns a sigmoidal, Hermite interpolation between [0,1] for x on [min,max]. |
The function is sigmoidal and inputs smaller than 0.5 underestimate the input:
In[1]:= | ![]() |
Out[1]= | ![]() |
Values larger than 0.5 do the opposite:
In[2]:= | ![]() |
Out[2]= | ![]() |
Plot the function:
In[3]:= | ![]() |
Out[3]= | ![]() |
The single-argument form of SmoothStep passes through the point {0.5,0.5}:
In[4]:= | ![]() |
Out[4]= | ![]() |
Specify an input domain by giving a second argument:
In[5]:= | ![]() |
Out[5]= | ![]() |
Smoothly interpolate with more gradual changes at the start and stop of the interpolation domain:
In[6]:= | ![]() |
Out[6]= | ![]() |
Interpolate colors:
In[7]:= | ![]() |
Out[7]= | ![]() |
In[8]:= | ![]() |
Out[8]= | ![]() |
The derivative of SmoothStep approaches 0 as x approaches 0 or 1 from either side:
In[9]:= | ![]() |
Out[9]= | ![]() |
In[10]:= | ![]() |
Out[10]= | ![]() |
SmoothStep is second-order discontinuous at x=0 and x=1:
In[11]:= | ![]() |
Out[11]= | ![]() |
SmoothStep approximates the animation technique of "ease-in / ease-out":
In[12]:= | ![]() |
Out[12]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License