Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the complete conditional distribution of a variable in a statistical model
ResourceFunction["CompleteConditionalDistribution"][{Distributed[v1,dist1],Distributed[v2,dist2],…},vi] gives the distribution of vi conditional on v1,v2,…. |
Compute the conditional probability of a beta-distributed variable:
In[1]:= | ![]() |
Out[1]= | ![]() |
Derive the formula for gamma-Poisson conjugacy:
In[2]:= | ![]() |
Out[2]= | ![]() |
Add a constant multiplier:
In[3]:= | ![]() |
Out[3]= | ![]() |
Compute a conditional distribution that is not a named distribution:
In[4]:= | ![]() |
Out[4]= | ![]() |
Compute properties of the resulting distribution:
In[5]:= | ![]() |
Out[5]= | ![]() |
In[6]:= | ![]() |
Out[6]= | ![]() |
Derive the formula for normal-normal conjugacy:
In[7]:= | ![]() |
Out[7]= | ![]() |
Derive the formula for normal-inverse gamma conjugacy:
In[8]:= | ![]() |
Out[8]= | ![]() |
Compute multiple conjugate relationships for one model:
In[9]:= | ![]() |
In[10]:= | ![]() |
Out[10]= | ![]() |
In[11]:= | ![]() |
Out[11]= | ![]() |
Derive an update for a beta-binomial model based on multiple observed values:
In[12]:= | ![]() |
Out[12]= | ![]() |
Derive an update for a normal-normal model based on multiple observed values:
In[13]:= | ![]() |
Out[13]= | ![]() |
Derive an update for a gamma-Poisson model based on multiple observed values:
In[14]:= | ![]() |
Out[14]= | ![]() |
Derive gamma-gamma conjugacy:
In[15]:= | ![]() |
Out[15]= | ![]() |
Wolfram Language 14.0 (January 2024) or above
This work is licensed under a Creative Commons Attribution 4.0 International License