Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Determine whether a given multiway system is causal invariant
{"lhs1"->"rhs1",…} | string substitution system |
{{l11,l12,…}->{r11,r12,..},…} | list substitution system |
WolframModel[rules] | Wolfram Model system |
CellularAutomaton[rules] | cellular automaton system |
"type"→rules | system of the specified type |
"StringSubstitutionSystem" | rules given as replacements on strings |
"ListSubstitutionSystem" | rules given as replacements on lists |
"CellularAutomaton" | rules given as a list of CellularAutomaton rule specifications |
"WolframModel" | rules given as replacements on hypergraphs |
Determine total causal invariance for two string substitution systems:
In[1]:= |
|
Out[1]= |
|
In[2]:= |
|
Out[2]= |
|
TotalCausalInvariantQ can handle Wolfram Models and other system types:
In[3]:= |
|
Out[3]= |
|
In[4]:= |
|
Out[4]= |
|
In[5]:= |
|
Out[5]= |
|
TotalCausalInvariantQ supports both string and list substitution systems:
In[6]:= |
|
Out[6]= |
|
In[7]:= |
|
Out[7]= |
|
TotalCausalInvariantQ also supports multiway generalizations of cellular automata:
In[8]:= |
|
Out[8]= |
|
TotalCausalInvariantQ also supports multiway generalizations of Wolfram Models:
In[9]:= |
|
Out[9]= |
|
In[10]:= |
|
Out[10]= |
|
This work is licensed under a Creative Commons Attribution 4.0 International License