Function Repository Resource:

ComplexRootQ

Source Notebook

Determine if a given number is an integer complex root of another number

Contributed by: Wolfram|Alpha Math Team

ResourceFunction["ComplexRootQ"][value,rad,n]

returns True if valuen=rad and returns False otherwise.

Examples

Basic Examples (4) 

Test whether the given expression is a third root of unity:

In[1]:=
ResourceFunction["ComplexRootQ"][E^(2 I \[Pi]/3), 1, 3]
Out[1]=

Test whether the given expression is a sixth root of two:

In[2]:=
ResourceFunction["ComplexRootQ"][Sqrt[2] E^((I \[Pi])/3), 2, 6]
Out[2]=

Test whether a different expression is a sixth root of two:

In[3]:=
ResourceFunction["ComplexRootQ"][2^(1/6) E^((2 I \[Pi])/3), 2, 6]
Out[3]=

Test whether the given expression is a sixth root of three:

In[4]:=
ResourceFunction["ComplexRootQ"][2^(1/6) E^((2 I \[Pi])/3), 3, 6]
Out[4]=

Properties and Relations (1) 

Use ComplexRootQ to confirm the output of ResourceFunction["ComplexRoots"]:

In[5]:=
AllTrue[ResourceFunction["ComplexRoots"][1, 3], ResourceFunction["ComplexRootQ"][#, 1, 3] &]
Out[5]=

Publisher

Wolfram|Alpha Math Team

Version History

  • 4.0.0 – 23 March 2023
  • 3.2.0 – 20 May 2021

Related Resources

License Information