Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Interpolate over values given at the vertices of a polygon
ResourceFunction["PolygonInterpolation"][{p1,…,pn},{f1,…,fn},p] finds an interpolation of the function values fi corresponding to the polygon vertices pi at the point p. |
Compute an interpolation of vertex values at the center of a equilateral triangle:
In[1]:= |
|
Out[1]= |
|
Calculate the vertices of a pentagon:
In[2]:= |
|
Out[2]= |
|
Compute the value of a function at each vertex:
In[3]:= |
|
In[4]:= |
|
Out[4]= |
|
Find the value of an interpolation of the values at a point within the polygon:
In[5]:= |
|
Out[5]= |
|
A triangle:
In[6]:= |
|
Out[6]= |
|
Define values at the triangle's vertices for a linear function:
In[7]:= |
|
Out[7]= |
|
Evaluate the interpolant at a single point:
In[8]:= |
|
Out[8]= |
|
Evaluate the interpolant at multiple points:
In[9]:= |
|
Out[9]= |
|
Plot the interpolant over the triangle:
In[10]:= |
|
Out[10]= |
|
A star-shaped Polygon:
In[11]:= |
|
Values at the polygon's vertices:
In[12]:= |
|
Evaluate the interpolant at a single point:
In[13]:= |
|
Out[13]= |
|
Evaluate the interpolant at multiple points:
In[14]:= |
|
Out[14]= |
|
Plot the interpolant along with the original function over the star-shaped polygon:
In[15]:= |
|
Out[15]= |
|
Vertices for a bean-shaped polygon, and colors specified as RGB components:
In[16]:= |
|
Visualize the polygon colored using PolygonInterpolation:
In[17]:= |
|
Out[17]= |
|
Compare with the result of using the VertexColors option of Polygon:
In[18]:= |
|
Out[18]= |
|
Define a polygon using FindShortestTour over grid points:
In[19]:= |
|
See the polygon:
In[20]:= |
|
Out[20]= |
|
Define an arbitrary function and map it over all the vertices:
In[21]:= |
|
Out[21]= |
|
For 64 vertices, visualizing the results takes a few seconds:
In[22]:= |
|
Out[22]= |
|
This work is licensed under a Creative Commons Attribution 4.0 International License