Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Determine if two line segments intersect
ResourceFunction["SegmentIntersectionQ"][{a,b},{c,d}] determines if line segments | |
ResourceFunction["SegmentIntersectionQ"][{{a,b},{c,d}}] determines if line segments | |
Determine if two segments intersect:
In[1]:= | ![]() |
Out[1]= | ![]() |
Show a trapezoid:
In[2]:= | ![]() |
Out[2]= | ![]() |
Determine if diagonal segments of a trapezoid intersect:
In[3]:= | ![]() |
Out[3]= | ![]() |
Determine if the non-parallel segments of a trapezoid intersect:
In[4]:= | ![]() |
Out[4]= | ![]() |
Determine if neighboring segments of a trapezoid intersect:
In[5]:= | ![]() |
Out[5]= | ![]() |
Determine an edge-case degeneracy:
In[6]:= | ![]() |
Out[6]= | ![]() |
Show it:
In[7]:= | ![]() |
Out[7]= | ![]() |
SegmentIntersectionQ works in 3D:
In[8]:= | ![]() |
Out[10]= | ![]() |
Show the lines:
In[11]:= | ![]() |
Out[11]= | ![]() |
Various 2D intersections:
In[12]:= | ![]() |
Out[12]= | ![]() |
Various 2D non-intersections:
In[13]:= | ![]() |
Out[13]= | ![]() |
Various 3D intersections:
In[14]:= | ![]() |
Out[14]= | ![]() |
Various 3D non-intersections:
In[15]:= | ![]() |
Out[15]= | ![]() |
Find disjoint segment pairs from a set of twelve points:
In[16]:= | ![]() |
With timings, find all segment pairs that intersect:
In[17]:= | ![]() |
Out[17]= | ![]() |
With timings, use RegionIntersection to find all segment pairs that intersect:
In[18]:= | ![]() |
Out[18]= | ![]() |
Note the timing difference and compare the two results:
In[19]:= | ![]() |
Out[19]= | ![]() |
Show the results:
In[20]:= | ![]() |
Out[21]= | ![]() |
Various bad inputs will not work:
In[22]:= | ![]() |
Out[22]= | ![]() |
Degenerate overlaps are returned as intersections:
In[23]:= | ![]() |
Out[23]= | ![]() |
Of the 210 possible disjoint pairs of the 21 segments defined by 7 points, pick out those that intersect:
In[24]:= | ![]() |
Out[25]= | ![]() |
Nine crossings happens to be the minimum for seven points. Show it:
In[26]:= | ![]() |
Out[27]= | ![]() |
For 27 points, the minimal number of intersections is 6180. Set it up:
In[28]:= | ![]() |
Find the crossings:
In[29]:= | ![]() |
Out[29]= | ![]() |
Show it:
In[30]:= | ![]() |
Out[31]= | ![]() |
Wolfram Language 14.0 (January 2024) or above
This work is licensed under a Creative Commons Attribution 4.0 International License