Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate Ramanujan's sum
ResourceFunction["RamanujanC"][q,n] gives Ramanujan's sum cq(n). |
Evaluate c10(5):
| In[1]:= |
|
| Out[1]= |
|
Plot RamanujanC for different indices:
| In[2]:= |
|
| Out[2]= |
|
Show a table of Ramanujan sums:
| In[3]:= |
|
| Out[3]= |
|
RamanujanC threads elementwise over lists:
| In[4]:= |
|
| Out[4]= |
|
Verify the Brauer–Rademacher identity:
| In[5]:= |
|
| Out[5]= |
|
Express Cyclotomic[n,x] in terms of RamanujanC and BellY:
| In[6]:= |
|
| Out[6]= |
|
RamanujanC[q,1] is the same as MoebiusMu[q]:
| In[7]:= |
|
| Out[7]= |
|
RamanujanC[q,q] is the same as EulerPhi[q]:
| In[8]:= |
|
| Out[8]= |
|
RamanujanC[q,n] is a multiplicative function with respect to its first argument:
| In[9]:= |
|
| Out[9]= |
|
Verify the definition of RamanujanC in terms of the roots of unity:
| In[10]:= |
|
| Out[10]= |
|
RamanujanC can be expressed as a Dirichlet convolution:
| In[11]:= |
|
| Out[11]= |
|
Visualize Ramanujan's sum over integer values:
| In[12]:= |
|
| Out[12]= |
|
This work is licensed under a Creative Commons Attribution 4.0 International License