Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate Ramanujan's sum
ResourceFunction["RamanujanC"][q,n] gives Ramanujan's sum cq(n). |
Evaluate c10(5):
In[1]:= |
![]() |
Out[1]= |
![]() |
Plot RamanujanC for different indices:
In[2]:= |
![]() |
Out[2]= |
![]() |
Show a table of Ramanujan sums:
In[3]:= |
![]() |
Out[3]= |
![]() |
RamanujanC threads elementwise over lists:
In[4]:= |
![]() |
Out[4]= |
![]() |
Verify the Brauer–Rademacher identity:
In[5]:= |
![]() |
Out[5]= |
![]() |
Express Cyclotomic[n,x] in terms of RamanujanC and BellY:
In[6]:= |
![]() |
Out[6]= |
![]() |
RamanujanC[q,1] is the same as MoebiusMu[q]:
In[7]:= |
![]() |
Out[7]= |
![]() |
RamanujanC[q,q] is the same as EulerPhi[q]:
In[8]:= |
![]() |
Out[8]= |
![]() |
RamanujanC[q,n] is a multiplicative function with respect to its first argument:
In[9]:= |
![]() |
Out[9]= |
![]() |
Verify the definition of RamanujanC in terms of the roots of unity:
In[10]:= |
![]() |
Out[10]= |
![]() |
RamanujanC can be expressed as a Dirichlet convolution:
In[11]:= |
![]() |
Out[11]= |
![]() |
Visualize Ramanujan's sum over integer values:
In[12]:= |
![]() |
Out[12]= |
![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License