Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the regular solid harmonic function
ResourceFunction["SolidHarmonicR"][l,m,x,y,z] gives the regular solid harmonic |
Evaluate symbolically:
In[1]:= |
![]() |
Out[1]= |
![]() |
Plot over a subset of the reals:
In[2]:= |
![]() |
Out[2]= |
![]() |
Evaluate to high precision:
In[3]:= |
![]() |
Out[3]= |
![]() |
The precision of the output tracks the precision of the input:
In[4]:= |
![]() |
Out[4]= |
![]() |
SolidHarmonicR threads elementwise over lists:
In[5]:= |
![]() |
Out[5]= |
![]() |
Plot a real linear combination of regular solid harmonics:
In[6]:= |
![]() |
Out[6]= |
![]() |
The regular solid harmonic satisfies the Laplace equation:
In[7]:= |
![]() |
Out[7]= |
![]() |
SolidHarmonicR uses Racah's normalization:
In[8]:= |
![]() |
Out[8]= |
![]() |
SolidHarmonicR can be expressed in terms of SphericalHarmonicY:
In[9]:= |
![]() |
Out[9]= |
![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License