Details and Options
"Engel", "Pierce", "Sylvester", "Cantor", "CantorProduct", "Lüroth" and "Oppenheim" are supported as the last argument to specify the type of expansion.
"Lüroth" can also be written as "Lueroth" when passed as an argument.
ResourceFunction["FromNumberExpansion"][{a1,a2,a3,…},"Engel"] returns 1/a1+1/a1a2+1/a1a2a3+….
ResourceFunction["FromNumberExpansion"][{a1,a2,a3,…},"Pierce"] returns 1/a1-1/a1a2+1/a1a2a3-….
ResourceFunction["FromNumberExpansion"][{a1,a2,a3,…},"Sylvester"] returns 1/a1+1/a2+1/a3+….
ResourceFunction["FromNumberExpansion"][{a1,a2,a3,…},"Cantor"] returns a1*1!+a2*2!+a3*3!+….
ResourceFunction["FromNumberExpansion"][{a1,a2,a3,…},"CantorProduct"] returns (1+1/a1)(1+1/a2)(1+1/a3)….
ResourceFunction["FromNumberExpansion"][{a1,a2,a3,…},"Lüroth"] returns 1/a1 + 1/a1(a1-1)a2 + 1/a1(a1-1)a2(a2-1)a3+….
ResourceFunction["FromNumberExpansion"][{d1,d2,d3,…},r,s,p,q,"Oppenheim"] returns 1/d1+(a1/b1)(1/d2)+(a1a2/b1b2)(1/d2)+…, where ai=r+s*di and bi=p+q*di for i=1,2,….,n.
ResourceFunction["FromNumberExpansion"][{p,{a1,a2,a3,…,ap}},"Lüroth"] returns an approximation of the rational number whose Lüroth expansion is an infinite periodic series with periodicity p.
ResourceFunction["FromNumberExpansion"] acts as the inverse of the resource function
NumberExpansion.