Function Repository Resource:

ContrapedalCurve

Source Notebook

Compute the contrapedal curve

Contributed by: Alfred Gray

ResourceFunction["ContrapedalCurve"][{a,b},c,t]

gives the contrapedal curve of the plane curve c with respect to the point {a,b} and parameter t.

Details and Options

The contrapedal curve is the analog of the pedal curve but computed using the normal instead of the tangent.
The pedal of a given curve c from a fixed point p is the locus of the foot of the perpendicular from p to the tangent to c.
The contrapedal curve (or normal pedal curve) is the pedal curve of the evolute of a curve c.

Examples

Basic Examples (3) 

Define a cardioid:

In[1]:=
cardiod = Entity["PlaneCurve", "Cardioid"][
   EntityProperty["PlaneCurve", "ParametricEquations"]][1]
Out[1]=

Compute the contrapedal of the cardioid:

In[2]:=
ResourceFunction["ContrapedalCurve"][{0, 0}, cardiod[t], t] // FullSimplify
Out[2]=

Plot the cardioid along with its contrapedal:

In[3]:=
ParametricPlot[
 Evaluate[{cardiod[t], ResourceFunction["ContrapedalCurve"][{0, 0}, cardiod[t], t]}],
         {t, 0.1, 2 \[Pi]}, Axes -> None]
Out[3]=

Basic Examples (3) 

Define an ellipse:

In[4]:=
ellipse = Entity["PlaneCurve", "Ellipse"][
   EntityProperty["PlaneCurve", "ParametricEquations"]][2, 1]
Out[4]=

Compute the contrapedal of the ellipse:

In[5]:=
ResourceFunction["ContrapedalCurve"][{1, 2}, ellipse[t], t] // FullSimplify
Out[5]=

Interactively plot the ellipse along with its contrapedal curve, varying the base point:

In[6]:=
Manipulate[
 ParametricPlot[
  Evaluate[{ellipse[t], ResourceFunction["ContrapedalCurve"][p, ellipse[t], t]}],
          {t, 0, 2 \[Pi]}, Axes -> None, PlotRange -> 3], {{p, {0, 0}}, {-5, -5}, {5, 5}}]
Out[6]=

Publisher

Enrique Zeleny

Version History

  • 1.0.0 – 26 February 2020

Source Metadata

Related Resources

License Information