Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Plot the decision boundaries of a classifier
ResourceFunction["DecisionBoundaryPlot"][data] plots the decision boundaries of a classifier trained on data. | |
ResourceFunction["DecisionBoundaryPlot"][data, classifier] plots the decision boundaries of a pre-trained ClassifierFunction classifier trained on data. |
Method | Automatic | classification algorithm used to classify the data |
"DataColors" | ColorData[97,"ColorList"] | color scheme representing data classes |
PointSize | Large | size of points representing the data |
Generate labeled 2D data:
In[1]:= | ![]() |
Out[1]= | ![]() |
Plot their classification regions:
In[2]:= | ![]() |
Out[2]= | ![]() |
Generate labeled 2D data with three class labels:
In[3]:= | ![]() |
Out[3]= | ![]() |
Plot their classification boundaries:
In[4]:= | ![]() |
Out[4]= | ![]() |
Plot the classification boundary of data as a List of rules:
In[5]:= | ![]() |
Out[5]= | ![]() |
Plot the classification boundary of data as a Rule between points and classes:
In[6]:= | ![]() |
Out[6]= | ![]() |
Generate clusters of 2D data:
In[7]:= | ![]() |
Classify the data:
In[8]:= | ![]() |
Out[8]= | ![]() |
Plot the decision regions:
In[9]:= | ![]() |
Out[9]= | ![]() |
Generate data and use the Method option to specify the classification algorithm used to classify the data:
In[10]:= | ![]() |
Out[10]= | ![]() |
In[11]:= | ![]() |
Out[11]= | ![]() |
Compare it with a different classification method:
In[12]:= | ![]() |
Out[12]= | ![]() |
Change the color of each class using the "DataColors" option:
In[13]:= | ![]() |
In[14]:= | ![]() |
Out[14]= | ![]() |
Change the size of data points with the PointSize option:
In[15]:= | ![]() |
In[16]:= | ![]() |
Out[16]= | ![]() |
Generate data and compare different classification algorithms:
In[17]:= | ![]() |
In[18]:= | ![]() |
Out[18]= | ![]() |
Each classification method accepts its own suboptions. Use the Method option to specify them and visualize how the classification regions change:
In[19]:= | ![]() |
In[20]:= | ![]() |
Out[20]= | ![]() |
The training data must be two dimensional:
In[21]:= | ![]() |
Out[21]= | ![]() |
The training data must be labeled and formatted correctly:
In[22]:= | ![]() |
Out[22]= | ![]() |
Generate data for four different classes:
In[23]:= | ![]() |
Specify different "GammaScalingParameter" values in the "SupportVectorMachine" classifier and notice how it overfits the data as this parameter increases:
In[24]:= | ![]() |
Out[24]= | ![]() |
Wolfram Language 14.0 (January 2024) or above
This work is licensed under a Creative Commons Attribution 4.0 International License