Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Weber parabolic cylinder function U
ResourceFunction["ParabolicCylinderU"][a,z] gives the Weber parabolic cylinder function U(a,z). |
Evaluate numerically:
| In[1]:= |
|
| Out[1]= |
|
Plot
:
| In[2]:= |
|
| Out[2]= |
|
Series expansion at the origin:
| In[3]:= |
|
| Out[3]= |
|
Evaluate for complex arguments and parameters:
| In[4]:= |
|
| Out[4]= |
|
Evaluate to high precision:
| In[5]:= |
|
| Out[5]= |
|
The precision of the output tracks the precision of the input:
| In[6]:= |
|
| Out[6]= |
|
Simple exact input gives exact results:
| In[7]:= |
|
| Out[7]= |
|
ParabolicCylinderU threads elementwise over lists:
| In[8]:= |
|
| Out[8]= |
|
ParabolicCylinderU satisfies the Weber differential equation:
| In[9]:= |
|
| Out[9]= |
|
A recurrence relation satisfied by ParabolicCylinderU:
| In[10]:= |
|
| Out[10]= |
|
Verify an expression for the derivative:
| In[11]:= |
|
| Out[11]= |
|
Express ParabolicCylinderU in terms of ParabolicCylinderV:
| In[12]:= |
|
| Out[12]= |
|
This work is licensed under a Creative Commons Attribution 4.0 International License