Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Fabius function
ResourceFunction["FabiusF"][x] computes the Fabius function. |
Plot the Fabius function:
In[1]:= | ![]() |
Out[1]= | ![]() |
Evaluate at an integer:
In[2]:= | ![]() |
Out[2]= | ![]() |
Evaluate at a dyadic rational (a rational number whose denominator is a power of two):
In[3]:= | ![]() |
Out[3]= | ![]() |
FabiusF does not automatically evaluate for arguments that are not a dyadic rational number:
In[4]:= | ![]() |
Out[4]= | ![]() |
Evaluate numerically:
In[5]:= | ![]() |
Out[5]= | ![]() |
Evaluate to arbitrary precision:
In[6]:= | ![]() |
Out[6]= | ![]() |
The precision of the output tracks the precision of the input:
In[7]:= | ![]() |
Out[7]= | ![]() |
FabiusF threads over lists:
In[8]:= | ![]() |
Out[8]= | ![]() |
The Fabius function for odd integer arguments can be expressed in terms of ThueMorse:
In[9]:= | ![]() |
Out[9]= | ![]() |
Functional differential equation for the Fabius function:
In[10]:= | ![]() |
Out[10]= | ![]() |
Higher derivatives of the Fabius function can be expressed in terms of the function itself:
In[11]:= | ![]() |
Out[11]= | ![]() |
FabiusF is undefined for complex numbers:
In[12]:= | ![]() |
Out[12]= | ![]() |
Plot a parametric function defined in terms of FabiusF:
In[13]:= | ![]() |
Out[13]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License