Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the full QR decomposition of a matrix
ResourceFunction["FullQRDecomposition"][m] yields the full QR decomposition for a numerical matrix m. The result is a list {q,r}, where q is a unitary matrix and r is an upper‐trapezoidal matrix. |
Compute the full QR decomposition for a 3×2 matrix with exact values:
In[1]:= | ![]() |
Out[1]= | ![]() |
In[2]:= | ![]() |
Out[2]= | ![]() |
Compute the full QR decomposition for a 2×3 matrix with approximate numerical values:
In[3]:= | ![]() |
Out[3]= | ![]() |
In[4]:= | ![]() |
Out[4]= | ![]() |
Use a 3×4 matrix:
Full QR decomposition computed with exact arithmetic:
In[5]:= | ![]() |
Out[5]= | ![]() |
Full QR decomposition computed with machine arithmetic:
In[6]:= | ![]() |
Out[6]= | ![]() |
In[7]:= | ![]() |
Out[7]= | ![]() |
Full QR decomposition computed with 24-digit arithmetic:
In[8]:= | ![]() |
Out[8]= | ![]() |
Full QR decomposition for a 3×3 matrix with random complex entries:
In[9]:= | ![]() |
Out[9]= | ![]() |
In[10]:= | ![]() |
Out[10]= | ![]() |
Use a 3×4 matrix:
Compute the full QR decomposition using machine arithmetic with pivoting:
In[11]:= | ![]() |
Out[11]= | ![]() |
The elements along the diagonal of r are in order of decreasing magnitude:
In[12]:= | ![]() |
Out[12]= | ![]() |
The matrix p is a permutation matrix:
In[13]:= | ![]() |
Out[13]= | ![]() |
FullQRDecomposition satisfies m.p==ConjugateTranspose[q].r:
In[14]:= | ![]() |
Out[14]= | ![]() |
Here is some data:
In[15]:= | ![]() |
In[16]:= | ![]() |
Out[16]= | ![]() |
Set up a design matrix for fitting with basis functions 1, t, t2:
In[17]:= | ![]() |
Out[17]= | ![]() |
Find the full QR decomposition of m:
In[18]:= | ![]() |
Out[18]= | ![]() |
This finds a vector x such that is a minimum:
In[19]:= | ![]() |
Out[19]= | ![]() |
These are the coefficients for the least-squares fit:
In[20]:= | ![]() |
Out[20]= | ![]() |
In[21]:= | ![]() |
Out[21]= | ![]() |
Use a 3×4 matrix:
In[22]:= | ![]() |
Compute the full QR decomposition:
In[23]:= | ![]() |
The rows and columns of q are orthonormal:
In[24]:= | ![]() |
Out[24]= | ![]() |
In[25]:= | ![]() |
Out[25]= | ![]() |
Check that r is upper trapezoidal:
In[26]:= | ![]() |
Out[26]= | ![]() |
In[27]:= | ![]() |
Out[27]= | ![]() |
In[28]:= | ![]() |
Out[28]= | ![]() |
Check that m is equal to ConjugateTranspose[q].r:
In[29]:= | ![]() |
Out[29]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License