Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Church combinator
ResourceFunction["ChurchCombinator"][n] gives a combinator corresponding to the n-th Church numeral where n is an integer. | |
ResourceFunction["ChurchCombinator"][op] gives a combinator corresponding to the operator op. |
Generate a combinator corresponding to the seventh Church numeral:
| In[1]:= |
| Out[1]= |
Apply combinator transformation rules to see the numeral itself:
| In[2]:= |
| Out[2]= |
Convert to an integer:
| In[3]:= |
| Out[3]= |
Combinator for the zeroth Church numeral:
| In[4]:= |
| Out[4]= |
Apply combinator transformation rules to see the numeral itself:
| In[5]:= |
| Out[5]= |
| In[6]:= |
| Out[6]= |
Increment a Church numeral combinator:
| In[7]:= | ![]() |
| Out[7]= |
| In[8]:= |
| Out[8]= |
| In[9]:= |
| Out[9]= |
Add two Church numeral combinators:
| In[10]:= | ![]() |
| Out[10]= |
| In[11]:= |
| Out[11]= |
| In[12]:= |
| Out[12]= |
Multiply two Church numeral combinators:
| In[13]:= |
| Out[13]= |
| In[14]:= |
| Out[14]= |
| In[15]:= |
| Out[15]= |
Raise a Church numeral combinator to the power of another Church numeral combinator:
| In[16]:= | ![]() |
| Out[16]= |
| In[17]:= |
| Out[17]= |
| In[18]:= |
| Out[18]= |
ChurchCombinator is only defined for nonnegative integer n:
| In[19]:= |
| Out[19]= |
ChurchCombinator does not support all integer operations:
| In[20]:= | ![]() |
| Out[20]= |
This work is licensed under a Creative Commons Attribution 4.0 International License