Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Certify a number as provably prime
| "SmallPrime" | 1050 | lower bound for using the Atkin-Morain test |
| "Certificate" | False | whether to print a certificate |
| "PollardPTest" | Automatic | whether to use the Pollard p-1 method |
| "PollardRhoTest" | Automatic | whether to use the Pollard ρ method |
| "TrialDivisionLimit" | Automatic | number of primes to use in trial division |
| "PrimeQMessages" | False | whether progress is to be monitored |
PrimeQ indicates that 1093 is prime:
| In[1]:= |
| Out[1]= |
ProvablePrimeQ gives the same result, but it has generated a certificate:
| In[2]:= |
| Out[2]= |
ProvablePrimeQ works on arbitrarily large numbers:
| In[3]:= |
| Out[3]= |
ProvablePrimeQ automatically threads over lists:
| In[4]:= |
| Out[4]= |
Use the option "Certificate"→True to view the certificate directly:
| In[5]:= |
| Out[5]= |
| In[6]:= |
| Out[6]= |
A random prime:
| In[7]:= |
| Out[7]= |
Progress messages are printed with "PrimeQMessages"→True:
| In[8]:= |
| Out[8]= |
Here is a random prime:
| In[9]:= |
| Out[9]= |
If ProvablePrimeQ has returned a result, use ResourceFunction["PrimeQCertificate"] to print the certificate:
| In[10]:= |
| Out[10]= |
| In[11]:= |
| Out[11]= | ![]() |
With "Certificate"→True, ProvablePrimeQ repeats the Atkin-Morain primality test:
| In[12]:= |
| Out[12]= | ![]() |
A certificate cannot be generated for -1, 0, or 1:
| In[13]:= |
| Out[13]= |
Wolfram Language 11.3 (March 2018) or above
This work is licensed under a Creative Commons Attribution 4.0 International License